Jowen u ‘/\‘

- A e s wlarT
B | 22 enS
T - H - E 339
OHIO | P55

UNIVERSITY

(5 W

A Sys't'emi for the Real-Time Display of
Radar and Video Images of Targets

W.W. Allen and W.D. Burnside

(NASA-CR-138058) A SYSTeM FUR TdfE REAL-TIME N91-213%4
DISPLAY OF RADAPR AND VIDED IMAGES OF TARGETS
(Chio State Univ.) 155 p cscL 171

unclas

63/32 0003344

The Ohio State University

—_FlectroScience Laboratory

Dcpcmnem of Electrical Enqinurl;a
————————————— Columbus, Ohio 43212

Technical Report 722780-1
Grant No. NAG 2-542, Supp. No. 2

August 1990

National Aeronautics and Space Administration

- Ames Research Center

~Wolett Field, CA 94035

R — and

Pacific Missile Test Center

Point Mugu, CA 93042

—————--A. Approved for public release; Distribution is unlimited

Vs

NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

{

[

"
i il

50272-101

REPORT DOCUMENTATION | 1. REPORT NO. 2. 3. Reciplent’s Accession No.
T PAGE
; 4. Title and Subtitle 8. Report Date
August 1990
A System for the Real-Time Display of Radar and Video Images of Targets
- T. Author(s) 8. Performing Org. Rept. No.
W.W. Allen and W.D. Burnside 722780-1
- 9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
= The Ohio State University
ElectroScience Laboratory 11. Contract(C) or Grant(G) No.
1320 Kinnear Road (C)
Columbus, OH 43212 ' (G) NAG 3-542, Supp. No. 2
- 12. Sponsoring Organiration Name and Address 13. Report Type/Period Covered
T NASA Pacific Missile Test Center Technical Report
Ames Research Center Point Mugu, CA 93042 14.
- Moffett Field, CA 94035

15. Supplementary Notes

EPEEY
s

16. Abstract (Limit: 200 words)

4
'1’ (L
bodi

This report describes a software and hardware system for the real-time display of radar and video
- images for use in a measurement range. Its main purpose is to give the reader a clear idea of the
= software and hardware design and its functions. This system is designed around a Tektronix XD88-30
graphics workstation, used to display radar images superimposed on video images of the actual target.

== The system’s purpose is to provide a platform for the analysis and documentation of radar images and
i - their associated targets in a menu-driven, user-oriented environment.

17. Document Analysis a. Descriptors

= IMAGING 2.D
= SIGNAL PROCESSING 3D
SIGNATURES VISUALIZATION

b. Identifiers/Open-Ended Terms

- c. COSATI Field/Group

’ 18. Availabllity Statement 19. Security Class (This Report) 321. No. of Pages
- A. Approved for public release; Unclassified 155
L Distribution is unlimited. 20. Security Class (This Page) 22. Price
T Unclassified
(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-7T7)

I Department of Commerce

IS

Contents

CHAPTER
1 Introduction

2 Compact Range and Radar Imaging Principles

2.1 Compact Range Theory and Operation.]
2.1.1 System Calibration
2.1.2 Clutter Reduction
2.1.3 Compensation for System Drift

2.2 Inverse Synthetic Aperture Radar Imaging

2.3 Scattering Center Imaging

2.4 Time Domain Response Tracking

2.5 Image Presentation

3 System Hardware

3.1 Introduction.
3.2 Tektronix XD88-30 Workstation
3.3 Imaging Technology FG100V Video Processor
3.4 NEC Corporation NC-8 Video Camera
3.5 Matrix VME Parallel /O Board
36 IBMPC/AT
3.7 Data Translation Parallel /O Board

4 X-Windows Overview

4.1 Widget Programmingo

4.1.1 Example : The Command Button Widget

4.1.2 Example: The Box Widget
4.2 Event Model Programming
4.3 Programming Style 0 0.

5 Software Design Philosophy

5.1 Display Screen Partitioning
52 MainMenu e e e

it

{ -

zact__| | JNIENTSONALLE Nt

PRECEDING PAGE BLANK NOT FILMED

7.9.2

5.3 Pop-up Data Input Windows
54 ErrorRecovery e
5.5 Interfacing to the Real Time Data Processing Program
68 Lighting and Camera Placement for Video Acquisition
6.1 The Ideal Target and Lighting
6.2 Lighting for the Compact Range at the ElectroScience Laboratory
6.3 Camera Placement and Lens Choice
6.4 Lighting and Camera Placement Results
7 An X-Radar User’s Manual
7.1 Initialization of Shared Memory Resources
7.2 ExecutingX-Radar
7.3 Camera and Lighting Adjustment
7.4 Acquiringa VideoImage.
7.5 Displaying a RadarImage I
7.6 Scaling and Aligning the Radar Image
7.7 Saving Video and RadarImages
7.8 ChangingtheColorMap.
7.9 Program Usage Examples e
7.9.1 Example #1 : Capturing a video image and aligning with a

radarimage IR P
Example #2 : Displaying Real-Time Radar Images on a

Captured VideoImage
7.9.3 Example #3 : Displaying an ISAR image

8 Conclusion
APPENDICES

A Programming the FG100V Video Board

A.1 VME Protocol Address Spaces
A.2 XD88 VME Device Address Space
A.3 Shared Memory Initialization

A3.1 Listingl —— SHMJINIT.C

A.3.2 Explanationof Listing #1
A.4 Shared Memory Attachment in X-Radar
A.5 FG100V Control Software e

B Listing of X-Radar
B.1 Program ITIdnit.c
B.2 Programxradar.,

B21 Modulexrdrc.

iv

Eiam g EEE e = -

O 111 (1 1T {1 S [} i

£/

(!

B.2.2 Module xinterface.c ¢ v 0 i i e e e e e e e 89

B.2.3 Module ximage.C o 106

B.2.4 Module xframe.c« v ¢ i i e e e e e e e e e e 119

B.2.5 Module XCOIMI.C . « + & ¢ v v« v v v e e e e e e e e e e e 125

B.2.6 Module xutil.c i i e e 128

C X-RADAR Errors 141

C.1 X-RADAR Error Messageso v v 141

D X-RADAR Data File Formats 143

D.1 Radar Image File Format 143

D.2 Video Image File Format 144

D.3 ISAR Image File Format 144
Bibliography

v

o

Gt

|

Bl

List of Figures

= 0 00 ~J O OV W QI BN

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

ISAR image of an aircraft test body. 2
ISAR image with outline of target. 3
Scattering center image superimposed on a video image of the target. 4

7

A compact RCSrangeo oo

The timing diagram of various clutter and target returns. 9
ISAR image of a square aluminum plate. 11
Scattering center image of three spheres. 13
Time-domain tracking image of a aircraft test body. 14
Block diagram of PC/AT - based imaging system. 17
Block diagram of XD88 - based imaging system. 18
X-RADAR main window with sub-window partitions. 28
An example of the correct lighting and target. 33
Lighting diagram for previous figure. 34
An unpainted aluminum test target. 36
The same target with a light coating of white paint. 37
Aircraft model against a black background. 39
Aircraft test body against a blue absorber background. 40
Side-view of compact range showing top-view camera placement. . 4l
Down-range view of range showing side-view camera placement. . . 43
Top view image of an aircraft test body. 44
Side view image of an aircraft test body. 45
Top view image of dihedral test scatterers mounted on styrofoam.. 46
Side view image of dihedral test scatierers mounted on styrofoam. 47
Main screen after video image capture of aircraft test body. 55
Setting the top view scale factors. 56
Setting the rotational offset. 58
Setting the top view offsets. o oo 59
Entering the video output filename. 60
Main screen after entering the RTDPmode. 62

vii

m__lg INTENTIONALER SEAND PRECEDING PAGE BLAMNK NOT FILMED

30
31
32

33
34
35

Side view of aircraft test body during RTDP mode. 63
Main screen for ISAR file nameentry. 65
ISAR image of an F4 aircraft. 66
Memory organization in the XD88 Workstation.. 70
Usage of the AMC to calculate the physical address of a VME device. 71

FG100V control registermap. b e e e e e 78

vili

LTI R {1

Bl

{ IR

f‘ﬂ” mime

List of Tables

1 Command button widget resources and their
2 Box widget resources and their default values

ix

default values.

ryome
Vil did o

Chapter 1

Introduction

The documentation and visual correlation of radar images with their associated
targets is a continuing problem since a radar image is not necessarily recogniz-
able on its own. Figure 1 is an inverse synthetic aperture radar (ISAR) image
of an aircraft test body [2]. This problem is particularly acute for high speed,
high resolution imaging techniques, such as the 3-D scattering center imaging as
proposed by Dominek, et al. [1] The usual solution to this problem is to superim-
pose the radar image on a scaled outline drawing of the target. Figure 2 shows
an example of this method, showing the ISAR image of Figure 1 superimposed
on an outline drawing of the target [2]. This technique is used for both computer
displays and for publications. While this gives the observer information about the
outline surface of the target, it does not convey information about specific target
features, such as joints, window openings, etc., all of which can cause significant
radar image features. Further, it does not provide documentation of the target
itself or any modifications that might have been carried out on the target, such as
the application of absorbent material to specific areas of the target.

A far better solution to this problem is proposed in this report. If, instead
of an outline drawing, let us imagine the radar image superimposed with a video
image of the actual target. In this way, many more features of the target become

evident,such as joints, window openings, surface treatment, fasteners (bolt and

TIME IN NANOSECONDS

7.0
|

-8.0

! U | 1 1 1 T I ! L) [| I

TIME IN NANOSECONDS

Figure 1: ISAR image of an aircraft test body.

]

70 -60 50 40 -30 -20° 10 00 1.0 20 3.0 40 50 6.0

[}
7.0

8O

[N I] U l) { L«

10

-1.0

TIME IN NANQSECONDS
olo

N A A T T
80 70 40 50 -40 30 =20 10 oo 10 20 30 40 50 60 70 80
" TIME IN NANGOSECONDS

Fi_g.ure 2: ISAR irrrﬂu;ge with outline of target.

rivet heads), etc., can be easily identified. Additionally, it provides unambiguous
documentation of the target and modifications made to the target. Figure 3 is a
screen print from the system described in this report. (Note: magnitude data in
the radar images in this report has been suppressed to offset the limitations of black
and white reproduction.) The figure shows the same target as in Figure 2 with a
scattering center radar image superimposed on it. Clearly, the method described
herein provides much more informatijon about the target than in Figure 2. Such a

system can also be an extremely useful diagnostic tool for diagnostic radar ranges,

serving as a visual check on the validity of the data during the data collection and
processing sequence.
ORIGIMNAL PAGE IS
OF POOR QUALITY
-
.
T S TR _
WINDOWZ s -

Figure 3: Scattering center image superimposed on a video image of the target.

The system described in this report is composed of a high-speed graphics work-
station interfaced to two video cameras. It is also interfaced to the data acquisition -
computer which controls the compact radar range hardware. Two independent
pieces of sofiware running concurrently on the graphics workstation handle the -
data processing and the radar/video image display. This report focuses on the
video/radar image acquisition and display portion of the system. This system was -
. _

-
wb

nem e

v

| I (! A I

{

developed for use in the compact radar range measurement facility at the Ohio

State University ElectroScience Laboratory.

i #

Chapter 2

Compact Range and Radar
Imaging Principles

While there are several different techniques for generating radar images, they are
all closely related to radar cross section (RCS) measurement and analysis. High
resolution time or frequency domain data is required to produce these images, so
any discussion of radar imaging techniques must begin with a description of the

techniques used to generate this data.

2.1 Compact Range Theory and Operation

Pure time domain measurements are difficult to achieve, so an equally viable
method of producing this data is to measure data in the frequency domain and
then transform it, using the inverse Fourier transform, to the time domain. A
diagram of an RCS measurement system is shown in Figure 4. The important el-
ements in the system are a swept-frequency transmitter, a receiver, a broad-band
antenna system, a recording and processing system and a target pedestal which
may be rotated to position the target. For most imaging techniques, the target
must be in the far field zone of the antenna, and in order to conserve space, this
is achieved by placing the feed antenna at the focus of a parabolic reflector. The
parabolic reflector produces a plane wave in the area of the target, and the system

is known as a compact range RCS measurement system.

6

a4l

i

(IR T | (i a {

Three basic problems must be overcome in any RCS measurement system.
First, the system must be calibrated to compensate for variations in system gain.
Second, clutter from scatterers other than the target must be reduced to acceptable

levels. And finally, compensation must be made for system drift.

REFLECTOR
BACK
WALL
TRANSMITTED
SIGNAL
= TARGET
TRANSCEIVER
PEDESTAL

Figure 4: A compact RCS range

2.1.1 System Calibration

The variations in system gain as a function of frequency are determined and com-
pensated for by comparing measured RCS data with the theoretical RCS data of
the same target. A sphere is usually used as the target for this procedure, as the
theoretical RCS of a sphere as a function of frequency is easily calculated. The

following equation defines the system gain :

ReferenceData (1)
Theoretical Data

SystemGain =

where Reference Data is the measured backscattered fields of a sphere as a
function of frequency and Theoretical Data is the backscattered fields of a sphere
as a function of frequency as calculated by the MEI solution [3]

The target data is calibrated by dividing it by the system gain, giving the

following calibration equation :

: t
CalibratedData = Re_fe(:fz:l;ata - Theoretical Data (2)

where Raw Data is the measured backscattered fields as a function of frequency

of the target under measurement.
Thls allows the variations in system gain to be removed from the raw data

before performing the transformation to the time domain.

2.1.2 Clutter Reduction

Virtually any object, aside from the target itself, in the radar range will cause clut-
ter which interferes with desired the RCS measurement. The antenna mismatch,
the parabolic reflector, and the walls of the room are all major clutter'sources.
However, most of these components can be removed from the received signal by
time gating. Figure 5 illustrates the timing of these various components. At time
to, a transmit pulse is sent to the feed antenna. There is an immediate return due
to the impedance mismatch in the antenna. At time t,, the receiver receives the
direct return from the reflector. At time t2, the desired signal from the target is
received and finally, at time t3, the reflection from the back wall of the room is
received. So that only the desired return from the target is received, the receiver
is only enabled during the ’range gate’ surrounding the target return. The timing
and length of the range gate are determined by the position and size of the target
so that unwanted reflections are kept to a minimum. Even with the range galing
techmque, there is still enough residual clutter that another technique must be

applied. This is known as background subtraction.

i

r Iy
i 1

(e

X

R |

SIGNAL
RANGE GATE\\\
| — |
| |
| |
. - - - . N . I R - l o
~ t0 t1 t2 t3 TIME
ANTENNA REFLECTOR TARGET BACK
'MISMATCH 7 .~ WALL

Figure 5: The timing diagram of various clutter and target returns.

Background subtraction may be used to remove clutter which is present within
the receive range gate since the system can measure the complex scattered fields.
This clutter is from scatterers in close proximity to the target itself, such as the
target pedestal and absorber. A background scan is performed first, without the
target in place. RCS scans of the target are then made and the background scan
data is subtracted from this data. This process removes the contributions from the
unwanted scatterers in the frequency domain data. This process works successfully
provided that there is little or no electromagnetic interaction between the target

and the pedestal or chamber.

2.1.3 Compensation for System Drift

Any analog electronic equipment is sub ject to long term drift due to temperature
and aging effects on the components. The effects of this drift can be removed
from the data by comparing the measured raw data with data from a fixed target
which is always present in the range. In the OSU compact range, the backscatter
from the parabolic reflector is used as this reference target. The compensation is

performed by switching the receive gate between the reference and target returns.

The target data is then scaled to the reference data. Since the time difference
between the reference and target measurements is very small, very little drift can
occur within this short period. This procedure minimizes the variations due to

system drift.

2.2 Inverse Synthetic Aperture Radar Imaging

The traditional method of producing radar images from a fixed radar system is
known as inverse synthetic aperture radar (ISAR) imaging [5]. In this method, the
target is rotated through 360 degrees (for a fully focussed image) and frequency
domain response data is recorded at small incremental angles. A two dimensional
inverse Fourier transform is then applied to this data to yield a two dimensional
image matrix, with the elements of the matrix representing the relative response

at a particular down range and cross range location. Since the radar signal travels

at the speed of light, the absolute down range and cross range location can be -

inferred from this data.
One of the severe disadvantages of this method is the amount of data required
to produce the image and, hence, the computational resources needed. Typically,

a fully focussed ISAR image requires approximately 30-60 minutes of CPU time on

the Digital Equipment Corporation VAX 8550 at the ElectroScience Laboratory.r

Clearly, it is not possible to apply this method to a high speed radar imaging
system, although this method does produce a high quality image. Figure 6 is an
ISAR image of a tilted square plate, from data scanned over 90 degrees. The
responses outside the obvious boundaries of the plate are due to interaction terms,
which are caused by energy coupling to the surface of the plate and diffracting off
the edges and corners. Note that the image processing is based on direct scatter
back to the radar which means that mechanisms that propagate on the surface of
the target are not imaged properly. Thus, these terms don’t appear on the extent

of the target.

10

M |

lw "o

-

my oo
i 1

%3 RLAD RADAR TMAGE FTIT

W\ Seian 1o sinrviiw om |

e e e

BEU/NASA KRABAR

READ VIDIO IMAGI T11F

WRITE VIDFO TMAGE |

READ YSAR TMAGE FILE]

[ma i

VIDLO IMAGL CONTROL
MULTT - SCRIFN wont |

(G vire 5 i e

A switn Ta coor |
[ViDIO BOARD CONTROL

[Live vioro 1o mniTor |

TRAME GRAR 10 COMPUTEA |

RADAR IMAGE CONTROL

Figure 6: ISAR image of a square aluminum plate.

11

2.3 Scattering Center Imaging

While the traditional ISAR method described above assumes that either the target
or the radar can be rotated to gather data at the required look-angles, some targets
cannot be rotated d\rxetroﬂ size or fragility. For common RCS measurements, the
usual solution is to laterally defocus the feed to obtain backscatter measurements
over a relatively small range of look-angles. However, this assumes that the phase
front of the i_ricident Waye%;gpiigsﬁg}gdar as the feed is laterally displaced and
this is only valid for small displacements. The phase front produced by lateral
dlsplacement of the feed is e;t'u_ally astlgmatlc or nonsphencal and cannot be
used for imaging, where absolute phase accuracy is reqmred Recently however, a
technique for focueSIng this astlgmatlsm has been developed at the ElectroSmence
Laboratory [4]. Further, this technique is applicable to both near- and far-zone
measurements.

This technique makes use of the fact that the target area of the compact radar
range is well defined. If an arbitrary down-range image plane is defined in the
target area, then there will be a well defined distance between a test point in the
image plane to each feed element or feed location. Subsequently, the phase of the
backscattered ﬁeld recelved at each feed element from a scatterer located at the test
point can be calculated. If the measured backscatiered field is multiplied by the
complex conjugate of the calculated phase and summed over all the feed elements,
then the backscattered field from points in the image plane where scatterers exist
will sum coherently, and incoherently for all other points. Consequently, a cross-
range image of the scattering centers will be obtained. The down-range location
of a scatteri;lg center is found either by moﬁng the image plane or by a frequency
scan procedure, as outlined in [4]. Figure 7 shows a radar image, displayed as a

surface plot, of three spheres generated using this method.

The main advantage of this technique is that the target does not have to be

12

L [ANINE BNEE | 1 w®on e«

ol e

[T

did L

Figure 7: Scattering center image of three spheres.

rotated to obtain the scattering center image, thereby making this process very

fast, and therefore it is well suited to producing images in real time.

2.4 Time Domain Response Tracking

Another method of creating radar images is known as Time Domain Response
Tracking. This approach requires a minimum of two swept frequency scans at
different look angles or different feed positions. Each swept frequency scan is the

backscatter response of the target which is transformed to the time domain to

13

ORIGINAL PAGE IS
OF POOR QUALITY

MUALTT - SCREFN MODE |

NN SJOF VIFW -3 FULL srunq

_
" ST RADAR THAGE] -
=
Figure 8: Time-domain tracking image of a aircraft test body.
find the down range location of the scattering centers. The cross range location -
of the scattering centers is obtained from the change in position of the time do- —
main scattering features between successive look angles. Calculating the impulse -
response from the frequency scans requires only a one dimensional Fourier trans- —
form. The white rectangles in Figure 8 represent the radar image of a aircraft test =
body generated using this technique. -
= :
Obviously, since a minimum of two one dimensional transforms are required,
this method is extremely fast, and it has the advantage that the relative ampli-
-
14 .
-

-

("

4

tudes between the various scatlering centers are well known. The disadvantage to
this method is that there are substantial ambiguities in the tracking of the time
domain scattering features. However, recent rwork with this method has improved
by adding tracking algorithms used to correlate the scattering features between

successive look angles.

2.5 Image Presentation

The radar image display system described in this report is capable of displaying
radar images generated by any of these methods, but since the system was designed
to display the images in real time, the high speed imaging techniques are of more

interest.

15

Chapter 3

System Hardware

3.1 Introduction

The radar image display system described in this report was envisioned to operate
in real time, in the sense that the imaging system could operate concurrently with
the data collection and processing system. Further, the imaging system needs the
capability to capture and display video images together with color presentations of
scattering center images. In addition to these basic requirements, it was felt that
the ability to transfer the video/radar image to video tape would be invaluable,
particularly to visiting users of the facility.

The choices involved in selecting the system hardware were made based both
on availability and functionality. The system was originally implemented on two
IBM PC/AT’s and a DEC VAX 8550, as outlined in Figure 9. This original system
was tested for functionality and ease of use for several weeks. While this evaluation
confirmed the usefulness of the concept, the speed limitations inherent with that
approach didn’t make it as atiractive as necessary for day-to-day operations. It
was found that the primary speed limitation was the necessity to send raw data
to the VAX and then send processed data back to the PC used to display the
images. The software needed in the PC was too slow to maintain the desired image
rate. Writing new software for the image display PC was investigated, but it was

decided that even this would not solve the problem. At this point, it was obvious

16

i

¢ {

'!

{

IMAGING RADAR
oMAGE (| M et TF|| sysTEM SYSTEM
VIDEO MONITOR MONITOR
BOARD
16-BIT
= PARALLEL
E BUS
IBM . | 1IBM | <—] RADAR
PC/AT PC/AT | ¢; [x—"| SYSTEM
a
ETHERNET ETHERNET
] -] vax
. 8550
TOP VIEW
VIDEO CAMERA

]

SIDE VIEW
VIDEO CAMERA

Figure 9: Block diagram of PC/AT - based imaging system.

that a whole different system would be necessary. In fact, it was decided that
the processing and image display had to be done on the same computer. Several
options, such as adding an array processor to the PC, were explored, but these
were also too slow. The Tektronix XD88-30 Graphics Workstation was chosen
due to it’s extremely high speed, it’s abilitiy to process and display high resolution
graphics and because it is a multi-tasking computer, which is capable of running
more than one process at a time. The other components of the system were
chosen to be compatible with the XD88-30. The system hardware consists of
the Tektronix XD88-30 Graphics Workstation, an Imaging Technologies FG100V
Video Processing board, a Matrix Corporation VME Parallel I/0 board,two NEC
Corporation NC-8 Color Video Cameras, an IBM PC/AT, and a Data Translation
Parallel I/O board. The interconnections between the various components are

shown in Figure 10.

17

EXTERNAL XD88 RADAR
VIDEQ MONITOR SYSTEM
MONITOR MONITOR

!

g| 24-BIT — 16-BIT
o = PA%LSLEL o o PARéAULSLEL S
S| TEKTRONIX | | A——2N|®| IBM (™l =22 N| rapar
| x0-88 [Hhc——].| PC/AT| s [N——]SYSTEM
s 3 . .

< a a

::] TOP VIEW
VIDEO CAMERA

SIDE VIEW
VIDEO CAMERA

Figure 10: Block diagram of XD88 - based imaging system.
3.2 Tektronix XD88-30 Workstation

The Tektronix XD88-30 is a new super-mini graphics workstation, designed to
handle both graphics processing/display and data processing. It runs under the
UTEK System V operating system (a variation of the UNIX operating system).
The normal user interface which is used in this system is X-Windows, which is
described in detail in a later chapter. The XD88-30 used in this system has 16M
bytes of main memory, a 160M byte hard disk and a high speed streaming tape
drive. The system display is a 19 inch (diagonal) full color RGB monitor with
1280x1024 pixel resolution.

| 33 Imaging Tec'hfnoilbgy FG100V Video Proces-
sor

The Imaging Technology FG100V Video Processor is a VME-bus compatible circuit
board installed in the XD88-30. It functions as a video frame grabber which

18

R

i

&

l

Ty
i

digitizes a frame from a video camera or other video source and stores this digitized
video image in its o§vn on-board memory. This data is then available to the host
computer for processing and display, or the image can be displayed on a separate
video monitor connected directly to the board. The FG100V is capable of storing
up to four separate frames of video, which are captured from any one of four video
inputs. Each frame of video is digitized to a resolution of 512x480 pixels (from an
NTSC standard composite video signal). In addition, the FG100V has provisions
for many specialized image processing techniques, although in this application

these capabilities are not used.

3.4 NEC Corporation NC-8 Video Camera

The NEC NC-8 Video Camera is a color video camera which is suited to the low
light-level conditions found in the compact range at The Ohio State University’s
ElectroScience Laboratory. Two of these cameras are used : one mounted on an
overhead crane to provide a top view of the target (showing the target in the X-Y
plane) and another is mounted on the wall of the compact range room to provide

a side view of the target (showing the target in the Y-Z plane).

3.5 Matrix VME Parallel I/0O Board

The Matrix VME Parallel 1/O board is a VME-bus compatible 32-bit digital I/O
board installed in the XD88-30. It, along with the companion board installed in
the IBM PC/AT, serves as a high speed parallel communication bus between the
XD88-30 and the IBM PC/AT.

3.6 IBM PC/AT

The IBM PC/AT controls the compact radar range hardware and handles data
collection [6]. Raw data is transferred to the XD88-30 on the 32-bit parallel /O

19

bus, where all data processing, display, and data storage is done. The IBM PC/AT
unit used in this system is conﬁgured thh 640K bytes of mam memory and 2M

bytes of extended meory The systern momtor is an EGA- compatlble RGB display.

3. 7 Data Translatlon Parallel I / O Board

The Data Translatlon Parallel I/O Board is a circuit board installed in the IBM-
PC/AT. It is the companion board to the Matrix Parallel I/O board installed

in the XD88-30 and is used to transfer data between the IBM PC/AT and the
XD88-30.

20

L IH

BN |

[

{11

l\w 1y n
s i

Chapter 4

X-Windows Overview

The X-Windows user interface was chosen for this system because it provides a
programming environment specifically designed to allow graphical user interfaces
to exist in a multi-user network environment. Although X-Windows provides a
very extensive set of basic functions for creating and manipulating graphics, these
functions tend to be too basic for creating large applications [9]. Therefore, most
X-Window programming packages also include a set of graphics objects known
as 'widgets’ and a set of functions for créating and manipﬁiating these widgets.
For this project, the widget set created at MIT known as the Athena widget set
[Xaw] and the widget toolbox known as Xt toolbox [Xt] was used [7,8].

4.1 Widget Programming

Since X-Windows is a hierarchical system, all widgets are said to be either a
‘toplevel’ widget or ’children’ of some other widget. Below a toplevel widget, all
the children are organized in a tree structure such that an operation performed on
a parent (such as deleting the parent) usually affects all the children below it in the
tree structure. W:thm a program, a widget is actually Just a specific instance of
a dynamically allocated data structure which holds all the information necessary
to describe the widget. In addition to settlﬁg the parameters which describe the

appearance and the hierarchy of widgets, the major task of the programmer is to

21

describe what action is to be taken in response to the various actions of the user.

The primary benefit of a software environment, such as Xaw and Xt, is the
con'sisténcy of the interface between the programmer and the system. All widgets
have a common set of basic parameters. Identification of the parent widget, loca-
tion of the widget within the parent widget, foreground and background colors, as
well as others are specified for all widgets. In addition, parameters specific to each
type of widget are included. Further, these parameters can be set either within
the program, at run-time from a data file or from a command line. The details of

widget appearance and programming are best illustrated with several éxamples.

4.1.1 Example : The Command Button Widget

The Command Button Widget is a rectangle that contains a text label. When
the pointing device! cursor is placed within the rectangle, its border is highlighted
to indicate that the button is available for selection. When the pointing device
button is clicked, the command button widget is selected and the callback routine
associated with the widget is gxgcufed. When creating a command button widget,
numerous resources are available to the programmer to control the appearance and
behavior of the widget. Table 1 lists the available resources, the default value and

a brief description of what each resource does.

The menu of X-Radar is made up of command button widgets, each of whose
callback routines accomplishes a particular task. These callback routines can be
very simple, such as the ’EXIT’ button, which simply exits the program, or very
complex, as is the callback for the ’'RTDP IMAGING’ button, which itself contains
a separate event processing loop. Further, the resources associated with a partic-

rilvxlar widget c;ﬁ be changt;d rdr);;xra.nﬁcally during ’Irarc;gv;é.tﬁréxiércutfi’oﬁ{ For example,
the text labels for some of the bultons in the menu of X-Radar are changed dynam-

ically to reflect the possible menu choices the user has available at a given moment.

1A pointing device is a mouse or trackball

22

] . wn W |

LI

IW. [}
Wi

" wy e

par e
Nt

t

Table 1: Command button widget resources and their default values.

Name Default Value Description

XtNbackground White Window background color
XtNbackgroundPixmap none Window background pixmap
XtNborderColor Black Window border color
XtNborderPixmap none Window border pixmap pattern
XtNborderWidth 1 Width of button border in pixels
XtNcallback NULL Callback for button select
XtNcursor opendot Pointer cursor style in widget
XtNdestroyCallback NULL Callback for XtDestroyWidget
XtNfont ' fixed Label font

XtNforeground Black Foreground color

XtNheight text height Button height in pixels
XtNhighlightThickness % 2 Width of highlighted border in pixels
XtNinsensitiveBorder Gray Border color when not sensitive
XtNinternalHeight 2 Internal border height for highlight
XtNinternalWidth 2 Internal border width for highlight
XtNjustify XtJustifyCenter Type of text alignment

XtNlabel Button name Button label
XtNmappedWhenManaged True Whether XtMap Widget is automatic
XtNsensitive True Whether widget receives input
XtNtranslations none event-to-action translations
XtNwidth text width Button width in pixels

XtNx 0 Widget x coordinate in pixels
XtNy 0 Widget y coordinate in pixels

23

Table 2: Box widget resources and their default values.

Name Default Value Description

XtNbackground White Window background color
XthackgroundPixmap none Window background pixmap
XtN BorderColor Bl;xck Window border color
XtNborderPixmap none Window border pixmap pattern
XtNborderWidth 1 Width of button Borderrin ﬁixels
XtNdestroyCallback NULL Callback for XtDestroyWidget
XtNhSpace 4 Horizontal space between children
XtNheight text height Button height in pixels
XtNmappedWhenManaged True Whether XtMapWidget is automatic
XtNtranslations none event-to-action translations
XthShaéé 7 7 4 Vertical space betwéen children
XtNwidth text width Button width in pixels’

XtNx 0 Widget x coordinate in pixels
XtNy T 0 Widget y coordinate in pixels

This capability allows the same command button to accomplish several different

tasks, thereby saving system resources and speeding up program execution.

4.1.2 Example : The Box Widget

The box widget provides an environment which manages the placement of other
- arbitrary widgets within a box of specified dimensions. The children are rear-
ranged to best fit within the box when the box is resized or when children are
gdded or deleted. Since the placement of children within the box is automatic, the
programmer has little control over the arrangement of the children. Table 2 lists

the available resources and their description.

24

Ui

{

1w
j I
i i s

umwv‘ '
JRET T

The menu area for X-Radar is contained in a box widget, although some control
over placement of the command button widgets and label widgets is achieved by
carefully sizing them so that they only fit within the box in a vertical arrangement.
The advantage of .using a box widgeﬂtrgiﬂsi that the programmer need not calculate the
exact screen coordinates for each child widget, as would need to be done if a menu
were constructed without the box. Further, if the menu needs to be suppressed at
some point during program execution, only the box widget needs to be 'unmapped’,
which will cause all of its children to be unmapped as well.

There are several methods for actually creating a widget with the desired re-
source values, and the interested reader is referred to Appendix B for the method

used for this system or to [10] for other methods.

4.2 Event Model Programming

Menu-style user interfaces are said to be event-driven which means that the pro-
gram appears to be doing nothing until the user generates an ’event’. Events are
usually generated by moving and/or clicking the pointing device, typing a key on
the keyboard or by timers created within the program. X-Windows also provides
the tools to describe and accept events from any other device which might be
attached to the computer system.

Each particular fype of widget provides its own mechanism for accepting events.
Part of a widget’s description are parameters which associate particular events with
the widget and what action is to be taken following those particular events. It is
the job of the programmer to create logical and useful action sequences for each
particular event, such as what to do after the user clicks a mouse button on a

button’ widget.

25

4.3 Programming Style

Due to the very nature of the X-Windows environment, there is not a lot of room
for individual programming style. The hierarchical structure of the environment
dict#ie;s the basic order of the;;rogltam, although the appearance of the application
is completely up to the programmer, Initially, the hardware environment must be
established throﬁgh calls to functions which return the type of terminal or screen
on which the application is being run. Then, for most types of applications, the
widgets which will be needed for the application are created. Since widgets can be
created without being displayed, it is usually advantageous to create all necessary
widgets at the beginning of the program, rather than creating them as needed
within the application. In addition to creating the widgets, the functions which
are called in response to each particular event must be written. At this point, all
that remains is the event processing loop. Depending on the complexity of the
events and the way in which events are to be processed, the programmer can rely
on a loop procedure included in the Xt toolbox or write their own event processing
loop. Usually, the application ends from within the processing loop in response to

some particular event.

26

Ll i
‘
|

o

1
il

i
|

Chapter 5

Software Design Philosophy

There were several m;ljbrrrobject;v;sr Wilrrgggigningﬂtvhri;sjst’.é'm. First, to provide
an easy to use environment to capture and display top and side views of video
and radar images; second, to provide the user with a convenient method of storing
and retrieving this lnformatlon and third, to provxde an analytic tool for compact

radar range data acquisition and analyms These goals indicated that 2 menu-

- driven program was needed, as well as dictating that a large portion of the screen

be dedicated to various image displays. In accordance with the program naming
convention associated with X- Wlndows thls program has been named X-Radar.
As discussed in Chapter 4 X Wmdows dlctates, to e large part the overall
design of the software but the ;;;;;;,rance and ease of use of the sysiem is pro-
grammer dependent. For this application, most of the individual users of this
system will not 'uée the system very often; thus, the software interface must be
as intuitive as possible. As a result, the menu item labels must be simple and
straightforward, and the error recovery procedures should be consistent and as

graceful as possxble Fxnal]y, user prompts must be used hberal]y to guide the

mftequent user. /

or

5.1 Display Screen Partitioning

The resolution of the video acquisition board is 512x480 pixels, and the desired
elements of the main display window dictated the display screen in terms of parti-
tioning this data as well as others. Figure 11 shows one example of the partitioning
of the main display window. The main menu is displayed along the right side of

the display. All functional selections are listed in this menu.

MY/NAA FRARAR

KIAD YIDEO 1MALT FTIT]

WRITE VIDEO 1MACIE

Rt Al _ll" o

"~ [VIDIO IMAGT CONTROL

W VIEW =) FillL SCRE PN |

SWITCH TO SINOCHRIS

VIDFO BOARD CONTRO!
1191 VIDIO 10 MONTTOR |
TRAME GRAB TO COMPUTIR |

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 11: X-RADAR main window with sub-window partitions.

Two 512x480 windows across the top of the display are normally used to display
the top and side views of the radar target. These are the main image display

windows, although either one can be expanded to fill the entire display screen

28

i L L (l—

(excluding the main menu area).
The remaining 544x1024 window at the bottom is used to display system mes-
sages and data plots from the range hardware when this program is used in con-

junction with the data processing code.

5.2 Main Menu

The main menu is divided into four parts, with related functions grouped together
as shown in Figure 11. The top-most section has functions related to image file
input and output. Next is a group of functions controlling how the video images
are displayed; i.e., full-screen or multi-window. Following this section is a group of
functions for controlling the FG100V video board. And finally, a group of functions

for controlling how the radar image is displayed.

5.3 Pop-up Data Input Windows

When user input is required, a pop-up window is used. If only a single piece of
data is required, such as a file name, all keyboard input is *focused’ or forced into
that window. When input is complete, the user only needs to close the window
by clicking the mouse on the ’EXIT’ button. If more than one piece of data
is requested, the user must click the mouse on the item desired and enter the
requested information. For windows where input is essential, the user is blocked

from exiting the window until all input fields are entered.

5.4 Error Recovery |

Error recovery has been designed to be as painless for the user as possible. When a
recoverable error occurs, a text window containing a descriptive message is popped
up’ on the screen. In order to assure that the user acknowledges the error, the

message window is actually a single item menu, and the user must click the mouse

29

on it in order 1o erase the message window. Several other approaches to this were
tried, but this was found to be the most effective way to handle errors that must
be acknowledged.

Recoverable run-time errors that the system is likely to encounter are limited to
two types. First;ﬁléfécﬂcess errors are operatriﬁg; syétem g'enerated, and are usually
due to a specified file not being found or being otherwise unavailable. If this
type of error occurs, an appropr'irate'message is dis;;layred, and the corresponding
input window is re-displayed after the error is acknowledged. The second type of
recoverable error i§ due to the user not using the syéte;n ;:érljectly. These errors are
termed "X-Radar Protocol Errors’ and usually occur when the user does something
which is inappropriate in the current system context. Appendix C lists all of the
recoverable errors and their possible causes.

Other system errors can occur, but usually require more user attention than
can be provided from within the application. If this type of error occurs, the

program terminates, and the user is returned to the operating system.

5.5 Interfacing to the Real Time Data Process-
ing Program

This software was designed to be used in a multi-tasking environment and can
be run in conjunction with the real-time data processing program called RTDP,
which is run as a background process to this program and is described in [14]. Data
is passed from the RTDP program to X-Radar using an X Windows mechanism
known as 'window properties’ [9].

A window property is a programmer-defined data structure associated with a
particular window, and as long as two applications share a common window, a
pointer to the property data strudure may be passed between the applications.
The simplest window fo use for this is the 'root’ window, which is shared by all

applications running on the workstation. Further, 'PropertyNotifyEvents’ can be

30

| I | { i U | L) i | U [/ i {

i

t

[

|
|

f

0!

iy

A [I

(

"
|

passed between applications to notify each application that another application has
modified the shared property. X Windows prevents applications from acéessing the
property simultaneously by storing access requests in a queue. This prevents data
corruption between applications which are writing and reading the property (this
does not prevent applications from overwriting old data before it is read however).

For this software, the property used to share data is a floating point array, large
enough to hold a complete radar image. In the RTDP IMAGING mode, X-Radar
enters an event processing loop which handles only two kinds of events : Proper-
tyNotifyEvents and ButtonPressEvents. When the RTDP program has completed
an image, it sends X-Radar a PropertyNotifyEvent. X-Radar then retrieves the
data in the array and disblayé it. When therdiéplay is complete, X-Radar gen-
erates a PropertyNotifyEvent, telling the RTDP program that it is ready for the
next image. This full handshaking between the two apf)lications guarantees that
X-Radar does not miss any data transfers. This sequence is repeated until a But-
tonPressEvent (generated by pushing a pointing device button) is encountered,

which causes X-RADAR to exit the RTDP IMAGING mode.

31

Chapter 6

Lighting and Camera Placement
for Video Acquisition

Any discussion of photographic lighting must begin with consideration of the sub-
ject matter, the environment in which the photography is to be done and the ob-
jective in photographing the subject. In addition, there is always an ideal solution
and a realistic solution to a given problem, but the realistic solution requires some
compromise. And so it is with the problem in this case, which is to photograph
radar test targets which are actually mounted in the compact radar range.

The objective in photographing the target is straightforward : to render the
object with as much detail as possible, in an uncluttered, simple field of view, so
that when it is combined with the radar image of the target, only that information

which is pertinent will be visible.

6.1 The Ideal Target and Lighting

It is perhaps most informative to discuss the ideal target and lighting combination
first, as a means of illustrating the goals for which one should strive. Some of these
goals are easily achieved, while others are more difficult.

Figure 12 illustrates the photographic effect which one would like to achieve. In
the photograph, the model hangs in black space, with no extraneous background

and with full surface detail easily visible. Also the mount for the model is visible,

32

 Hi

It

ORIGINAL PACE S
OF POOR QUALITY

[

t

B na s e i]
- I
0P VIEW <> FULL SCREEN

-~ ‘ 23 - : StTE - SCALTN WOOT
3 : ; ; T amion 10 (iR
VIDLO BOARD CONTROL
LIvE VIDIO 1O WONITON
= ' = : TTven Vo siorviin Om]
)

SNITT RADAR IWAGT |
Y : 3 TROTATE RADAR IMACE
= - i) ik) 0P Vitw SCALE TATTORS
. y 51Dt VLW SCALL FACTORS |

T

Figure 12: An example of the correct lighting and target.

which is important for documentation.

First, proper lighting is required to render the surface detail correctly. Specular

reflections tend to wash out any surface details and also cause the video camera

to saturate. The model in this illustration was lit with two photographic flood
lights mounted at the same height as the model at a low angle of incidence to the
model’s fuselage, as shown in Figure 13. Positioning the lights at low angles of
o incidence and using diffuse lighting are two ways to minimize specular reflections.
Secondly, the background is completely black, which focuses all of the viewer’s

attention on the model. While this a seemingly simple point, it is surprisingly

|1
“

33

{1l

AIRCRAFT TEST
Booy -

250 WATT
PHOTO FLOOD
(2 PLACES)

SIDE VIEW
VIDEO CAMERA

Figure 13: Lighting diagram for previous figure.

34

L Hi— L [

{ | | { i« 1

oo

(

. |

{

difficult to achieve in practice. o
These ideas form the goals Wh.lCh one would like to achieve in the compact
range. Again, some of these goals are difficult to achieve, but there are many ways

to overcome the problems.

6.2 Lighting for the Compact Range at the Elec-
troScience Laboratory

While the compact range is desxgned to do radar i 1magmg, it was not designed to

be a photographic studio. The walls ﬂoor and ceiling : are covered with dark blue

order to reduce metallic ob_]ects w1thm the room, Wthh rmght cause unwanted

scattering of the radar signal energy.

The ambient lighting in the compact range room is Vpi'ovided by four sodium

vapor fixtures in the ceiling. These lxghts are very brlght and nd are : not at all con51s-

tent with the goal of diffuse llghtmg for the target. The specu]ar reﬂechons these
lights cause are very strong, particularly on polished targets. One solution would
be to turn these lights off during video acquisition, but due the long start-up time
of these lights (approximately 30 minutes), this is not a viable solution. Unfortu-
nately, there does not appear to be_rgisfqt:isfaetory solution to this problem other
than to alter the surface finish of the targets.

Most of the radar targets being investigated are made of polished aluminum,
copper or silver-plated metal. Under ideal studio conditions, these types of objects
are difficult to photograph, but under the conditions presented in the compact
range room, it is a very difficult task. Several possible surface treatments which
would ease the lighting problem have been considered. Probably the simplest and
easiest solution is to apply a thin coatlng of matt paint to the target. The impact
on the electromagnetic properties of such a coating have been investigated quite

extensively, but the results are fairly simple : if the coating is thin, in terms of

35

ORIGINAL PACE IS
OF POOR QUALITY

READ TSAR TMAGE FILE

vy [RADAR IMAGE COKTROL

SHIFT RADAR TWAGL

TROTATL WADAR IMWAGL |
ToP VIEW SCALE TACIORS

S100 VI W SCALL TACIORS

Figure 14: An unpainted aluminum test target.

wavelengths, and the target is a perfect conductor, the scattering properties will
not be seriously affected. For most targets of interest in this project, the target
madterial can be considered a perfect conductor, so a thin coating of paint should
not present too much of a problem. Figures 14 and 15 show the advantages of
painting a target white. In these figures, the exposure has been adjusted to show
the target to best advantage. E

A further proBlem caused by the ambient lighting in the compact range room
concerns the photographic appearance of the :b;ékg‘;bunds surrounding the target.
The overhead camera looks down diirectly:at the floor, which is covered with blue

radar absorbing material. The blue paint on the absorber reflects a sﬁbrising

36

{ (H

ORIGINAL PAGE IS

OF POOR QUALITY

RUAD VIDEO IMAGE FILE

T)
13

WRITE VIDEO JMALE FIL

READ RADAR TMAGE FItE

READ 15AR IMAGE FILE

RIAL TisE LV
VIDLO IMAGE CONTROL

RADAR IMALGE CONTROL

SIITT RADAR IMAGT

ROTATE RADAR TMAGE

10P VIEW SCALL FACTORS

int

hite pa

ing of w

ht coat

18

3

thel

i

The same target w

15

Figure

Ca

37

amount of light, making the floor aprpear much brighter in the video image than
to the eye. As a result, the target does not stand out significantly from the
background. The obvious solution to this problem is to create a darker background
on the floor around the target. Figures 16 and 17 illustrate this effect. In Figure 16
the background is black; while in the other figure blue painted absorber was used
as the background. At the ElectroScience Laboratory, the absorber on the floor in
the vicinity of the target is blue, but it is obvious that the radar absorbing material
on the floor in the vicinity of ’thé‘t;é‘x"‘g&wélﬁloﬂarbe changed to a material that is
natural black. This would provide a very dark background for the overhead camera
without affecting the overall lighting of the target or the scattering characteristics
of the range.

The ambient lighting does not provide enough tht to acquire satisfactory
video images, so additional lighting is provided by four 500 watt photographic
flood lights. Two of these are located near the focus and aimed at the parabolic
reflector of the compact range. Since the reflector is painted white, this provides a
very high level of crlifﬂiuse light in the vicinity of the target. To balance the amount
of light on the target, the other two flood lights are aimed at the back wall of the
ravng:e room. Whilé tl;e material on the rear wall of the rooﬁ’x is not extremely
reflective, it does provide enough additional diffuse light to light the target zone
effectively. In addition, in(ﬁ?idual targets may require even more light than this,

and up to four 250 watt clamp-on photographic flood lights are used for very small

or dark targets.

6.3 Camera Placement and Lens Choice

The placement of the cameras was determined by the viewpoints required for the
imaging system, one above the target and one to its side. The range is equipped
with an overhead crane for moving large targets into and out of the room. This

provides an ideal platform for the overhead camera. The crane can be moved

38

{] (| . l

i

A . g0 & «mr 1l

m
aimm
i I

i

ORIGINAL PAGE IS
OF POOR QUALITY

QIV/NATA ¥RAPAR
[Fiap_vibio it tii R

WRITC VIDLD TMACE LT |
HEAD WADAR IWAGE FILE]
AEAD ISAR IMAGE FILE

_Illl” SCK(& [11 ‘
SIDE VIEW -> Finl SCRUEN
SWITCH T0 COIDR

VIDIO BOARD CONTROI
“TIVI VIDID 10 WONI10M |
FRAME CRAE TO COWPUTER |
SWITCH 10 SIDEVIEW CAM |

_ SHIIT RADAR IMall

ROTATE RADAR TMAGE]
TOP VIEW SCALE FACTORS]
S10C VIt SCAIT VACIORS

EXIT I

against a black background.

Figure 16: Aircraft model

ORIGINAL PAGE IS
OF POOR QUALITY

VIDIO TMACE FHIL
RADAR TMAGE FLIE |

v
MLVl - SUREAN MIOE i
SIDE VIFW —> FINL SCRIEN
SWIICH TN [01 0K

71 [VIDEO BOARD conTRo! [N

1EIVF VIDIO 10 N)IOR

Figure 17: Aircraft test body against a blue absorber background.

40

ot t

o

/CRANE
17

VIDEO CAMERA

REFLECTOR ///)’ ‘
. BAFFLE BACK
WALL
9’_9"
177-9"
TARGET
TRANSCEIVER PEDESTAL

Figure 18: Side-view of compact range showing top-view camera placement.

directly over the mounted target for ﬁlmihg and then moved out of the way while
radar measurements are taken.

The lens choice for the overhead camera was determined by the geometry of the
room and the maximum target size. Figure 18 shows the geometry of the room,
the crane in place over the rotation pedestal and the location of the overhead
camera. A 7.5 mm focal length lens is used for most targets. The major problem
encountered with this choice is the distortion introduced by such a wide angle
lens. Some of the distortion is accounted for in the scaling procedure used for the
radar images, but this can only correct linear distortion, not the barrel distortion
introduced by a wide angle lens. A better solution would be to correct the radar

image based on a distortion map of the lens.

The side view camera is mounted on a removable pedestal near the side wall of

41

the compact range chamber. In other applications, this camera could be mounted
almost anywhere in the room, as in most compact range facilities, the target can

be rotated to provide a side view. In the Ohio State University compact range,

the camera was mounted near a side wall so that therbackground would be the

opposite side wall. Since the walls are covered with dark blue material and are not
well lit, this provides a relatively dark background in front of which the targets
are readily apparent.

Frigﬁrre 19 shows a down-range view of the room, the target lpedestal and the
location of the side view camera. Again, the geometry of the room and the maxi-
mum target size determined the focal length of the lens. A 12.5 mm focal length
is used for most work. The distortion with this lens is not as noticeable as with

the overhead lens due to the increased focal length.

6.4 Lighting and Camera Placement Results

This arrangement of cameras and lights provides very satisfactory video images
of a variety of targets. Shown in Figures 20 through 23 are video images taken
directly from the imaging system in the compact range. The targets are described

in the captions associated with each figure.

42

t

(L i LI (N

r w

t

L)
W

(i

BAFFLE

TARGET g
PEDESTAI\ i
VIDEO /
CAMERA 87
1
rl—- 10/ —=

Figure 19: Down-range view of range showing side-view camera placement.

43

READ VIDFO TMAGL F1iF

WRITE VIDID DeAGE TILT
MEAD WADAR TMAGE TILE |
READ JSAR IMAGE FILE |

WA um o
MILTE - SCRLEN wo0f |
“D! VIIW =) TiN] ‘(If’q

- IR
LIVE VIDIO 1D MwITOR
TRAM_GRAB 10 COMPUTLR
SWITOI 1O SIDLVITW CAM

SHIFT RADAR 1MAGE

ROTATE RADAR IMAGL

107 VIEW SCALE VACTORS |

TACTORS
L sstivcats |

Figure 20: Top view image of an aircraft test body.

ORIGINAL pAGE
. IS
OF POOR QuALITY

44

n
Il

Figure 21: Side view

ORIGINAL PAGE IS
OF POOR QUALITY

DSUHABA_XRABAR
PN I

RIAD VIDLO IMAGE FILE
WRITE &m:m_y_uL_ui_'

EAD RADAR TWaGE FILE

RCAD 1SAR TWAGE FILE

RAL 1M o0
VIDLO IMAGL CONI N0k
106 VITw - TULL SCREOM |

T1 - SCREFN WODF

witen 10 (ONTR

TRAME GRAE 10 COMPUTER |

SHI1CH 10 SIDLVIIW CAM |
L CON

ST 1 RADAR TMACGE

TROTATE WADAR 1MAGE |

SIOL VLW SCALE FATIORS

image of an aircraft test body.

45

N

41X}

]
smrg
w]

LY]
CONTROI

ORIGINAL PAGE IS
OF POOR QUALITY

WAL TiW W
L0 IMAGE CONTROL

IDFO_BOARD

VIVE VIDIO 10 MONITOR

WiTE -~ SCRM N WX}

SWITCH
ADAR IMAC[CONXNTROY
SHI71 RADAR JTHAGE

RIAD VIDEO TMAGE FlIT
WRITE VIDEQ IMAGE FIIE
READ ISAR IMAGE FILE

QiViiaia FRARQS

RIAD RADAK IMAGI

S0 VIfw

46

hedral test scatterers mounted on styrofoam

i

fd

13

Top view image o

22

igure

F

W o
o

TOP VIIW SCALE FACIORS

10T VIEW SCALL TACIORS

tAD JSAR TMAGE FILE

WOIATE RADAR JMAGL

SWIICH
TRAML GRAB 10 COMPUTER |

SWITCH 10 SIDIVIEW CAM

READ VIDED TMAGE FILE
WATTE VIDEO TMACE FILE
NEAD RADAR TMAGL FILE

" wmat
VIDLO IMAGL CONTROI

10P VIEW =) FULL SCREEN

3
-
n
]
[
| o<
f <
“
<
3
’
-
- 4l
o

dihedral test scatterers mounted on styrofoam.
47

image of

1ew

S Uil
©
= ¢ «
] s
o m.mm
8 < Q
50 3o
[[f g TH
(o Ne)

H ﬁ A- _,— .
[T i

Chapter 7
An X-Radar User’s Manual

One of the main goals in the design of X-Radar was to make it as user-friendly as
possible. While not all problems that the user might encounter can be foreseen, the

program is fairly straightforward to use and after a short initial learning period,

it’s use should be quite simple.

7.1 Initialization of Shared Memory Resources

Before X-Radar can be executed, the shaf?d memory resources for the FG100 must

be initialized. This is done by entering super-user mode and executing the program
‘frame.init’. If ‘frame_init’ has been executed since the last system power-down
or re-boot, ‘frame_init’ need not be executed again, although no harm is done by

doing so.

7.2 Executing X-Radar

Next, ‘xradar’ is executed from a command line. It will take several seconds for the
main screen and menu to appear. The program is ready to use when the command

buttons respond to movement of the pointing device.

48

14

I
|

(!

I
I

(i

7.3 Camera and Lighting Adjustment

Before adjusting the lights and cameras, the ‘LIVE VIDEO TO MONITOR’ menu
item should be selected so that the camera image can be viewed on the external
monitor. The video image displayed on the monitor can be switched between the
two cameras by selecting the ‘SWITCH TO SIDEVIEW CAM’ or ‘SWITCH TO
OVERHEAD CAM’ as required. Notice that the same menu item serves both
functions. '

The cameras and lights are turned on from a central power switch. The lights
pointed at the parabolic reflector should be aimed at the approximate center of
the reflector, while the lights facing the back wall of the chamber should be aimed
towards the center of the back wall.

The overhead camera (on the overhead 'crane) should be moved out over the
target so that the back edge of the overhead baffle is in line with the white marks
at the top of the chamber walls. The camera should be aimed so that the center of
the video screen is coincident with the axis of the target pedestal. The side view
camera and pedéstal should be fitted to the mating receptical mounted at the base
of the side wall of the chamber, and the camera aimed so that the vertical axis
is aligned with the target pedestal axis and the horizontal axis bisects the target
vertically.

If the lens aperture on either camera requires adjustment, it should be set
fully open, the lens should be adjusted for the best focus condition and then the
aperture adjusted so that the video image appears to have a full compliment of

gray values : from pure white to black.

7.4 Acquiring a Video Image

Once the lights and cameras are on and adjusted properly, the two video images can

be acquired and displayed by actuating the ‘FRAME GRAB TO COMPUTER’

49

command button. Formation of a video image takes approximately 30 seconds,
at which time the image will appear in the upper left window or the upper right
window of the screen, depending on which camera is activated. The other camera
is then selected by clicking on the appropriate command button, and the process
is repeated. Note that the external monitor video signal will respond to frame
~grabs by freezing the current video image, but can Vb;l;n-frozen without affecting
the grabbed image by selecting the ‘LIVE VIDEO TO MONITOR’ menu button.
Alternatively, if a vxdeo:mage is a.lrea._dy availabie in a disk file, the file can be
retrieved and displayed by selecting the ‘READ VIDEO IMAGE FILE’ command

button. After selecting this option, a text widget will pop-up on the screen so

that the user may enter a file name. Note that a particular video image file name
will refer to two files, one holding the top view image (filename_top) and the
other holding the side view image (filename_side). Both files will dutomatica.lly
be retrieved and displayed based on the root file name. For instance, if two files
named ‘target.img_top’ and ‘target.img_side’ exist, both of them will be read and
displayed by entermg ‘target.img’ for the file name. When the file name has been
entered in the text widget, clicking the pointing device on the ‘OK’ button in the

text widget will pop-down the text widget and the file(s) will be retrieved.

7.5 Displaying a Radar Image

There are several ways to retrieve and display a radar image file. First, if a desired
radar image file exists on the disk, the file can be read and displayed by selecting
the ‘READ RADAR IMAGE FILE’ menu item. Again, a text widget appears on
the screen so that the user may enter a file name. The radar image for both views
(assuming 3-dimensional data format is present in the radar image file) is then
superimposed on the current video image. If 3 dimensional data is not present

in the image file, the image for the missing view will be displayed as a line of

scattering centers along the target axis.

50

[l

LTI | i | i W e

REEE B .

Secondly, if the radar image file is an ISAR image in raster scan format, the file
can be read and displayed by selecting the ‘READ ISAR IMAGE FILE’ button.
Note that only one ISAR image can lr)ericilisplayed at a time and that the ISAR
image cannot be shifted or rotated for aligning with the video image.

And finally, if the RTDP program is running prior to executing xradar, radar

images can be displayed in real time as the data is being collected. The interface

‘to the RTDP program is completely transparent and selecting the ‘Real Time DP’

menu item will initiate this mode.

7.6 Scaling and Aligning the Radar Image

If the video and radar images are misaligned or are scaled incorrectly, the ‘Radar
Image Control’ functions can be used to correct the problem. It should be noted
that alignment or scaling of the radar image should not normally be necessary, since
if the cameras are properly aligned, the video image and radar image should also
be aligned and scaled properly. If alignment and/or scaling is required however,
these procedures should be carried out on full screen images in order to minimize
errors. It should also be noted that these procedures cannot be used on ISAR
images.

If only a single radar image needs to be aligned, the process can be done at
any time the radar image is displayed. Selecting the ‘SHIFT RADAR IMAGE’
menu item displays a full screen cross-hair cursor. The mouse is used to center
the cross-hairs on the phase center of the video image of the target. Clicking the
pointing device button then exits the selection and updates the position of the
radar image origin. This procedure should be repeated for the both the top and
side views of the target.

Rotational alignment is accomplished by selecting the ‘ROTATE RADAR IM-
AGE’ menu item. A vertical line will appear on the screen and the mouse is again

used to align the line with the down-range axis of the target. This procedure should

51

be carried out on both views of the target, and it may require several iterations to
achieve a satisfactory alignment for both. Clicking a pointing device button then
exits the function and updates the rotational position of the radar image.

Scaling the radar image requires knowing the actual dimensions of the extent
of the target. For instance, if the target is an aircraft model, the dimensions of
the wingspan, fuselage length and fuselage height are required. Scaling of the
radar image is accomplished by selecting either ‘TOP VIEW SCALE FACTORS’
for the top view or ‘SIDE VIEW SCALE FACTORS?’ for the side view. A small
menn is popped-up to guide the user through the procedure. First, the vertical
dimension item in the sub-menu should be selected by clicking on it with the
pointing device. Then, using the pointing device, place the cursor at one end of
the vertical dimension which is known, such as on the nose of an aircraft target.
Then, push and hold the pointing device button and drag the rubber-band line
to the other end of the known dimension, releasing the button when the cursor
is properly positioned. Then, place the pointing device cursor in the small text
window nexf to the dimension item just selected, and enter the actual dimension
(in inches) of the line traced byﬂther rubber band. Répéé.t the procedure for the
other dimension and exit the procedure by clicking the pointing device on the ‘OK’
button of the popped-up window. The radar image is scaled and redisplayed on

exit. This same procedure should be repeated for the other view of the target. It

may be neééé;sary to iterate the above procedures in order to reach a satisfactory
alignment of the radar and video images.

If the system is to be used in the real-time mode, a single radar image should
be used to set up alignment and scaling with the video image. This can be ac-
complished by selecting the ‘REAL TIME DP’ menu item, waiting until a radar
image is displayed and then exiting this mode. The initial radar image can then be

aligned with the video image using the above procedure. The real time processing

mode is then be f;:;—ct‘uafed,Adnd- all future radar images should now be displayed

52

i

00

i

C

properly.

7.7 Saving Video and Radar Images

Saving existing video and radar images files is very straightforward. Selecting
the desired menu item pops-up a text w1dget for entering tihe deéired file name.
Clicking the pointing device on the ‘OK’ button writes the file and pops the widget
down. If the system is in the real-timé:fmbrdfe, the radar imageé data is saved in the
RTDP program, but alignment and scaling information will not be saved. It should
be noted that under the UNTEK V operating system, an existing file with the same
name will be over-written, and this system does not check for the existence of a
file before writing. The formats of all files used by X-Radar are listed in detail in
Appendix D.

7.8 Changing the Color Map

An alternate monochrome color map is provided if the user wishes to display
the radar image, as well as the video image, using a monochrome gray scale.
This feature is provided so that the user may generate screen prints for use in
publications which are limited to monoéhronte reproductions. Clicking the pointing
device buiton on the ‘SWITCH TO MONOCHROME’ menu item will redisplay
the images using this gray-scale map. Clicking the pointing device button again
on the same menu item (the menu item label changes to reflect the next state) will

return the system to a full color color-map.

53

7.9 Program Usage Examples

Example #1 : Capturing a video image and aligning
with a radar image

1. The execution of frame.init’ has been added to the re-boot procedure
on the XD88-30 in use at the ElectroScience Laboratory, so there is no
need to execute this from a command line for this installation, however

in other installations, it may be necessary to do so.

2. Turn on the auxiliary lighting and adjust the position of the cameras so
that they are centered on the pedestal axis in both views. If necessary,
adjust the lens aperture on both cameras for correct exposure. Camera
position, lighting and exposure can all be monitored in real time on the
external video monitor by selecting the ‘LIVE VIDEO TO MONITOR’

menu item and switching between the two cameras using the ‘SWITCH

CAMERA'’ menu selection.

3. Capture video images of both views by selecting the ‘FRAME GRAB
TO COMPUTER’ menu item. The currently selected camera will de-
termine which view is captured and displayed, and the other view is
captured by switching to the other camera using the 'SWITCH TO ...

CAM’ menu item. Figure 24 shows the screen after a complete video

image frame grab.

. The radar image file is read and displayed by selecting the ‘READ
RADAR IMAGE FILE’ menu item.

. If necessary, scale the radar image to the video image by first select-
ing full-screen mode for the top view and then selecting the ‘SCALE
RADAR IMAGE’ menu item. Select the ‘SCALE VERTICAL DIMEN-
SION’ item on the sub-menu and position the cursor at the bottom end

of the known vertical dimension. Push and hold the mouse button while

54

| | I (. | |] Wi«

— CRIGINAL PAGE IS
' B OF POOR QUALITY

READ RADAR IMACE FILE
” TREAD TSAR TWAGE FILE)
_ el N Z v R EEs w
: b’ .] i . 0l yor vIEW -> FuLL SCREEN |
i : - <101 viTM - HRL SCwiEN

TTTRWIItH 10 T o

VIDI 0 HOARD CONTROL
LIVE VIDID 10 MON11O8
TRam GRAB 10 COMPUTER
Switcw 10 SIDIVIEW CAM |

RADAR {(MALI CONTROL

— v e 7 : : i u AR TWAGL
: g y : : e el ROYATE RADAR TMAGE
- T0P VIEW SUALE VACIORS |

S10f vilw SCALL TACIORS

Figure 24: Main screen after video image capture of aircraft test body.

55

ORIGINAL rAGE js
OF POOR QUALITY

| bst/nAtA xhAb
P40 VIDiO Mt ,
TOEO IMAGF FILE

IMAGE FILF

WAL 11 1
MULT) - SCREEM woof |

10T VILW -y rint Seaiing
__swiicn 10 conoR)
LIVE VIDID Y0 MOWITOR |
TRAMI GRAR 70 COMPUTER |
SWTOHTO SiotVITe CAn)
L KaDAR IMAGE ConTRoL

SHIFT RADAR JMAGE
ROTATE RADAR IMAGE

SCALE FACTORS

= SYSTIM CALLS

X317

ton (loches) “_1'"»
Set vertical dim,fi; (Im:»net;-";;.i_

Figure 25: Setting the top view scale factors.

positioning the cursor at the top end of the known vertical dimension.
Release the mouse button and move the cursor to the small window
to the right of the ‘SCALE VERTICAL DIMENSION® sub-menu item.
Enter the known vertical dimension in inches. Repeat this procedure for
the known horizontal dimension, entering it in the appropriate window.
Figure 25 shows the top view screen while setting the tép-view scale
factors. When complete, select the ‘OK’ item on the sub-menu. Switch

to full-screen display for the other view and repeat this procedure for

that view.

56

L

o

("

o
i

lm m
s b

—

. If necessary, rotate the radar image to align with the video image. While

this may be difficult if the down range axis of the radar image cannot
be determined, if the cameras are properly aligned, only a very slight
rotation will be needed. Select the full-screen mode of the view to rotate

and then select the ‘ROTATE RADAR IMAGE’ menu 1tem and move

the mouse cursor until the cursor line is parallel with the down range

axis of the v1dch lﬁmage._ r_vl_y‘;mouse buttqn to achpt the desired

rotation and re-display the rotated radar image. Figure 26 shows the
top view screen while setting the rotational offset. This procedure may

be repeated as necessary watch to the full -screen dlsplay of the other

view and repeat for that view.

. Also if necessary, shift the radar image by selecting the ‘SHIFT RADAR

IMAGE’ menu item and moving the cross-hairs to the phase center of
the video image. Figure 27 shows the top view screen while setting
the top-view offsets. Click any mouse button to accept the shift and
re-display the shifted radar image. Switch to the full-screen display or

the other view and repeat.

. The above three steps may be repeated until a satisfactory alignment

and scaling has been achieved.

. The video images should be saved by selecting the ‘WRITE VIDEO

IMAGE FILE’ menu selection. Enter the desired image file name in
the sub-window and select the ‘OK’ item in the sub-window. Figure 28
shows the top view screen while entering the filename for the video

image.

10. Exit X-Radar by selecting the ‘EXIT’ menu item.

57

v o o

T N
A e e

READ VIDEQ JMAGE FILE

WRITE VIDEO IMCE FILE
READ RADAR IMAGE FILE

READ | SAR IMAGE FILE
=,
RUAL FIvH 1P

VIDLO BOAKD CONIROL

LIVE VIDIO 10 MONTTON |

TRAME GRAE 70 COMPUTLR |

SWIICH 10 SIDIVIEW can]

RADAR IMAGE CONTROL

177 RADAR TWAer |
ROTATE RADAR IMAGE |

TOP VIEW SCALE TACIORS

_— 3}

<101 VITW SCALE ’A(IORS'

Figure 26: Setting the

58

rotational offset.

GRIGINAL PAGE is
OF POOR QUALITY

ORIGINAL PAGE I3
OF POOR QUALITY

i
H
F

e WRT M eI Ry 4

Figure 27: Setting the top view offsets.

59

READ_ISAR IMAGE FILE]
T maU e e]
VIDLO IMAGL CONTROL

WALTE - SCREEN woDC |
<TDI VIEW -3 FILL SCRLEN

SWIieH 10 roroR
VIDLO BOARD CONTROL

LIVE VIDIO 10 wov1TOR |

TRAML GRAB 10 COWPUTER |

SHITT RADAR 1WAGE
ROIATE RADAR I1MAGE
T0P VIEW SCALE FACTORS
SINE_VITW SCALT TACTORS |

A A i

o R L wmann
it

ST P

|

Figure 28: Entering the video output filename.

60

READ VIDED TMAGE FILE |
WRITE VIDED TMAGE TILE
READ RADAR IMAGE FILE |
TREAD TSAR TMAGE FILE |
T WAL e op
MULTE - SCREFN HODE
SIDE VIEW =) FULL SCREEN

SWITCH 10 (OfOR !

TRAME GRAB TO COMPUTER
SWITCH 1O SIDEVIFW CAM

RADAR IMALL CONTROL

SHITY RADAR TRAGL
ROTATE RADAN TWAGE
TOP VIEW SCALE FACIORS |
SIDT VIEW SCALT FACTORS |

SYSTEM CALLS

ORIGINAL PAGE ig
OF POOR QUALITY

i

7.9.2

. Follow strte:psVQ énd 3in Exaﬁiple #1.

Example #2 : Displaying Real-Time Radar Images
on a Captured Video Image

. Follow step 1 in Example #1, if necessary.
. Execute the Real Time Data Processing Program (RTDP) [14].

. After the RTPD program is running, and all parajr;letersrhave been set,

click any mouse button on an open area of the screen until a VT102

window becomesws_;biePlac;themouse cursor in ihé JVT1;O2 window

and execute 'xradar’.

. Select the ‘REAL TIME DP’ menu item and wait until a radar image is

displayed. Figure 29 shows the main screen after entering the real time
data processing mode. If scaling and alignment are necessary, click any
mouse button on the ‘REAL TIME DP’ item again to stop the radar
image acquisition. Use the displayed radar image to scale and align the
radar and video images, as described in Example #1. Select the ‘REAL
TIME DP’ item again to continue with the real-time display.

. During real-time display, all of the menu items, such as switching display

modes and color maps, remain active and can be executed at any time.
Figure 30 shows the top view screen after selecting ‘TOP VIEW — >
FULL SCREEN’ menu item while in real time mode.

. When radar image display is complete, exit the real-time mode by se-

lecting the ‘REAL TIME DP’ menu item again.

. If desired, save the video images by selecting the ‘WRITE VIDEO IM-

AGE FILE’ menu item and entering a file name. Select the ‘OK’ item

on the sub-window to accept the file name and write the file.

. Exit X-Radar by selecting the ‘EXIT’ menu item.

61

N

iS
TY

E{INAL pag
OF POOR Quay;

0 ronoR
10 COMPUTER |

JMAGE FILL
SWIITH
SYSTIM CALLS
ORi

SWITCH 7O SIDIVIIW CAM

RADAK 1MIA

TOP VIEW SCALE FACIORS
SIDU VITW STALL FACTORS

READ VIDHO TMAGE FILE |
WRITE VIDEO 1MACE FILE |
VIDLO IMAGL (OI\HROL

bSU/NABA RRABAR

FRAME GRAE

the RTDP mode.

ring

fter ente
62

I screen a

Mai

igure 29

F

: o ~ B Ay e TU/HARA ¥RARAR
o : : i : WAD VIDIO PMACE F10P]
WITL VIDi0 Tt f11¢]

: : k) 3 READ RADAR SWAGL FIIE
s k ; 3 : > 2 du 7 Fidaglll READ ISAR IMAGL FRIE

- k P - 5 . : Kt Al FIW DV
= ‘ 3 ' JH . . ,
y y : i : : ; ;o viiw STRTIN
T i1 - SCRITN WORE]

ROTATE RADAR 1MACE |
10P VIEwW SCALE FACTORS

t— e —— = o e 2
STOE VIEW SCAIE FACTURS

Figure 30: Side view of aircraft test body during RTDP mode.

ORIGINAL PAGE |
OF POOR QUALITY

- © 63

7.9.3 Example #3 : Displaying an ISAR image
1. Follow steps 1, 2 and 3 in Example #1.

2. Read the ISAR image file by selecting the ‘READ ISAR IMAGE FILE'
‘menu item. Figure 31 shows the main screen after selecting the ‘READ
ISAR IMAGE FILE’ menu item, while Figure 32 shows an ISAR image
of an F4 aircraft read from a file after selecting ‘TOP VIEW — > FULL
SCREEN’ (the image data in this file has been padded to create the
black border and whlte background) The ISAR i image shou]d conform

to the ﬁle format hsted in Appendix D. ISAR i images cannot be scaled
rotated or shifted, so this is all that can be done.

64

e |l wiroe W i wl 1 ¢ 1 |

[

il

READ VIDED IMAGE FILE
WRITE VIDID IMAGE FILE

RADAR IMAGE FILE

READ

READ ISAR TMACE FILE

Jim W

Wi AL
VIDLO IMACE U

1OP VIEW

ONIROL
=> FULl SCREEN

ERtTar

S ViTw

CONTROL

SHITT RADAR ITMAGY

MOTATE RADAR IMAGE]
10P VITW SCALE TACTORS

SIDE VILW SCALT FACTORS

RADAR IMAGT

SYSTEM CALLS

for ISAR file name entry.

aln screen

M

Figure 31

LITY

ORIGINAL PAGE IS
OF POOR QUA

65

CRIGINAL PAGE IS
OF POOR QUALITY -

PIV/NATA XRABAB

Fir o -~ J—
Riap VIDFO ImACL } ne '
WRITE VIDEO IMAGE FLIE

IMAGT CONTROI
MATE - SCROIN Wi |

sioe
[_senici 1o wovoriwos |
U1V VIDED 1O MONITOK |

TRAMC GRAE 10 COWPUIIR |

-

o]

S1DE VIEW SCALT Iflmsl

Figure 32: ISAR image of an F4 aircraft.

66 =

L S

b
e

Chapter 8

Conclusion

A hardware and software system for the display and analysis of radar images has
been described in this report. This system was designed to provide the user with a
versatile and efficient way to examine different types of radar images superimposed
on a video image of the actual target measured. This has been a.ccc')”.mplisrhéd by
using a menu-driven software architecture to allow the user to easily control the
various hardware components of the system. In addition, since the software is
event-driven, adjustments (scale, shift and rotation) to the radar images can be
done interactively even in the real-time mode. This allows the user to make fine
adjustments to the images as the processing is being done, rather than having to
wait until processing is complete.

The capabilities of the system have surpassed the original goals. The system is
capable of displaying radar images in the real time mode at a rate of approximately
one every three seconds. In addition, images can be recorded on video tape, or
hardcopy can be produced on a color printer. The system provides the user with
complete documentation of each radar image produced and serves as a diagnostic
tool for the radar system.

The system has undergone extensive testing during development and has been
recently put into use in the compact range at the ElectroScience Laboratory. While

the original design goals have been exceeded, new areas of application and devel-

67

opment have become evident. DPossible areas for further development are in the
addition of features for interactively analyzing individual scattering centers, corre-
lating scattering centers in one view with scattering centers in the other view and
developing an isometric view of the video and radar images.

In addition, there are several parts of the software that could be improved.
While both the RTDP program and X-Radar are running, there is often a need
to actuate the RTDP menus. While this can currently be achieved by cycling
through the various windows being displayed (by using the mouse buttons), it
would be much more convenient if this could be achieved with only one mouse
event. This could be achieved if both the RTDP program and X-Radar were each
placed under an application Vshell widget; in other words, each program should
have an application shell widget which covers the entire screen as the upper-most
parent in the program.

- The real-time image display could also be improved. As written, each new radar
image requiresr fh;t ihe entire video display be erased. A substantial improvement
in speed could be achieved if only the previous radar image could be erased. This
could l;e acmeved by using the function XClearArea() for each scattering center
marker, and then letting the ExposeEvent event handler fill in the missing part of

the video image.

68

L NI

(il

I

I I R |

[N

r

o

Appendix A

Programming the FG100V Video
Board h -

Programming the FG100V video bbard requires arcomplete understanding of the
way in which the XD-88 bus address space is organized, and an understanding
of the UTEK V system calls available to carry ;ut ﬁrfual address space memory
mapping. The address space in the XD-88 is organized into two separate, but
related address spaces : the VME address space and the Futurebus address space.
The Futurebus is the internal system bus used by the system for disk 1/O, CPU
interconnection and processing. The VME bus is used for interfacing the system to
the graphics sub-systems and 3rd-party vendor hardware [13]. The XD88 memory

space is organized as shown in Figure 33.

A.1 VME Protocol Address Spaces

The VME protocol specifies three dlfferent a.ddress spaces. VME standard’ ad-

dress space requires a 24-bit address and hence can access up to 16Mbytes. VME
’short’wmiidress space only uses 16-bit addresses and so only addresses 64 Kbytes of
space. There is also VME ’extended’ address space, which uses 32-bit addresses.
For many I/O purposes, the short address space is sufficient and the standard and
extended address spaces are usually only used for devices which have large amounts

of memory. Which address space is being accessed is determined by a byte known

69

-
OxFFFFFF LLLLLL L L
1 open for 3rd] -
. /partgedevices/IGM bytes
OxDFFFEFEF %;ﬁ;‘,ﬁ»ﬁ;ﬁ;’;{p 1 0xF00000 [/
g -
0xDE0Q0000_ [77z LT 0x000000 (b
0xDCO00000 R Phort BT sa23) ? ' -
0xDA000000 X _ OXFEEE Nopen sraparty] 64K bytes
0xD8000000 81614
—_— - o - -
; Ox1BEEEEFE
0xD6000000 0x1A000000
0xD4000000 K 5 0x18000000
0xD2000000 S12MB window J§ 0x16000000 M Open for WME- : -
0xD0000000 on to the _ Ux100UVOVY K bustrg partyj4192M bytes
et 0x14000000 Pl—mtortes
OxCE000000_ : ’ 0x12000000 -
[4 The window is B
DX Y il H 0x10000000
0xCA000000) registy, b OXFE000000 [Feserva e |
E| may ma o K S RATEmoo e [64M bytes -
0xc8000000 § 21 LT B B50R65E5S flbus debices
‘. ne TE&J1s -r
0xC6000000 ¢ :?;’é,::‘ér‘ié.ﬁf : 0x0A000000
3 ard space
0xC4000000 F§ 0x08000000 H Reserved for -
0xC2000000 H{ ion fo up to M160M bytes
0x06000000 P : Y
Oxcooooooo -{Eat endad (AMC D;‘b;) K ; tegog:.gsls
2355 . 0x04000000 o
-
Futurebus Address Space 0x02000000 »
0x00000000 4GRS SubES'sEE:'ni 32M bytes
VMEbus Address Space ‘ -
ﬁ B
Figure 33: Memory organization in the XD88 Workstation.
g Yy org
1] 3 - ’
as the Address Modifier Code (AMC). An AMC = 29 (hex) specifies the short
address space, an AMC = 39 (hex) specifies the standard address space and an ,
AMC = 0B (hex) specifies extended address space. The relationship between the
P P P
"AMC, the Futurebus and VME address space is shown in Figure 34. The details =
) P g -

of how the user sets this byte will be described later in this chapter.

31 Futurebus Address 0

VMEbus §Péce

n I0B§1 or LBC

Figure 34: Usage of the AMC to calculate the physical address of a VME device.

A.2 XD88 VME Device Address Space

The VME standard and short address spaces are mapped into two windows in
the Futurebus address space. VME extended address space is mapped onto the
Futurebus in 32Mbyte windows. The FG100V requires mapping into both the short
address space, for the control registers, and into VME standard address space, for
the video buffer memory.

Figure 35 shows the control register map for the FG100V [11]. Notice that all
registers are referenced as byte offsets from the base address. This is important
since the board only supports word transfers. This will effect what type of pointer

is used when accessing the control registers.

A.3 Shared Memory Initialization

VME address space is accessed in the XD-88 by mapping it into the real address
space of the machine. This is done by allocating ’shared memory’, that is, mem-
ory shared between the user and the system. The allocation of shared memory
on the XD88 is reserved for superusers only. This means that a separate pro-
gram must run at the superuser level to initially allocate the memory and that
this program must also allow non-superusers to access the memory segment. The
program 'frame._init.c’ is used to initialize shared memory for the FG100V video
board and is listed in Appendix B. The most important part of the code are the

define statements, which are reproduced in the partial listing below.

#define REG_PHYS_ADDR 0x0 /* Physical address of control regs.*/
#define MEM_PHYS_ADDR OxAO0000 /#* Physical address of video memory =/
#define REG_REGION_SIZE 0x2000 /#* size of reg. region in bytes */
#define MEM_REGION_SIZE 0x100000 /* size of mem. region in bytes */
#define REG_KEY 0x1000 /* key for reg shm */

#define MEM_KEY 0x1001 /* key for mem shm */

72

LR

l.‘ il

#define SHMFLAG (IPC_PHYS |
IPC_CREAT |
IPC_KNOCLEAR |
IPC_CI |
0777) /% define shared memory flags #/

#define REG_PHYS_SPACE (PHYS_VME |
PHYS_VME_SHORT |

PEYS_VME_DATA) /* AMC for control regs.*/
#define MEM_PHYS_SPACE (PHYS_VME |

PHYS_VME_STD |

PEYS_VME_DATA) /* AMC for frame buffer */

A.3.2 Explanation of Listing #1

A complete description of each of the define statements and the initialization code

follows below :

1. REG.PHYS_ADDR and MEM_PHYS_ADDR define the physical addresses
of the control registers and the frame buffer memory. As noted in the listing,
there is a bug in the function shmget() which requires defining the control
register physical address as 0000 (hex) and adding an offset Lo get the actual
physical address. The addition of the offset is not done in the initializa-
tion program, but instead is handled in the actual FG100V functions. The
shmget() function seems to work normally when mapping the address for the
frame buffer memory, and the physical address defined for it, A00000 (hex),
is correct.

2. REG_REGION_SIZE and MEM_REGION_SIZE define the amount of mem-
ory in bytes that is needed for the control registers and the frame buffer
memory respectively.

3. REG.KEY and MEM_KEY are the most important defines here. These
values allow other processes to access the memory areas allocated by this
program, and therefore, these values must be known to other applications
that wish to use the space and the FG100V video board.

4. SHMFLAG defines a set of bit flags passed to the shmget() function. The
exacl details of each flag will not be explained, so unless the actions of a

specific flag are in question, the values listed here should be used. The
values of the flags are defined in the UTEK system header file 'ipc.h’ .

5. REG.PHYS_SPACE and MEM_PHYS_SPACE define a set flags which define
the complete AMC used for each mapped area. The flags are defined in
the header file 'shmphys.h’, but are fairly self-explanatory. The define for
REG.PHYS_SPACE should be used as shown when mapping an I1/0 device

73

to VME short address space and the define for MEM_PHYS_SPACE should

be used as shown when mapping a device to standard address space.

The remainder of the initialization program is fairly simple. After turning off
signaling for bus errors (a good idea while debugging code for VME bus devices),
address space for the control registers is allocated. The shmget() function returns
an ID number for the memory space, if an error doesn’t occur. Errors are trapped
to a fatal exit after printing a description of the error.

Next, the memory area for the control registers is set to allow access by non-
superuser applications. The structure of type shmBusTable is defined in the UTEK
V system header file 'shm.h’ and is used to pass information about the shared
memory area to the function shmctl(). This function performs a number of different
functions and is outlined fairly well in Reference [12]. Here it is used to set the flag
SHMPHYS_ALLOW so that the memory space can be accessed by any application.
Again errors are trapped to a fatal exit after printing an error message and freeing
the memory allocated by the previous shmget().

The previous instructions are repeated for the frame buffer memory space.
Again note that before exiting due to an error, previously allocated space is freed.
This is done because the allocations are permanent, and are not freed just because
an error occurred. These allocations are only deleted from the memory manage-
ment table by a free() instruction or at power-down.

This completes the initial allocation of shared memory space for a VME device.

The next step is to attach a process to the memory space which has been allocated.

A.4 Shared Memory Attachment in X-Radar

The application is ’'attached’ to the previously allocated virtual memory space

through the same system calls used to allocate the memory. However, since the

sameallocat:gn’l;ey’ 1;used, 7txhérsrystem does not re-allocate the space, but sim-

ply returns an identification number for use by the application. The function,

74

|

"1] qlm n

¢

¢

il

1l

¢

 Hil

{1

ITLinit(), used to attach the allocated virtual memory space to X-Radar is listed
in Appendix B, module ’xframe.c’.

Again, the define statements are very important, and are listed in Appendix B,
module ’radar.h’. They are virtually identical to the define statementis in the
initialization program in Appendix B. It is extremely important that the values of
REG.KEY and MEM_KEY are the same in both, as this is the mechanism used
to associate the previously allocated memory space with the application. Also, it
is important that the amount of memory requested in the application program be
the same or less than the amount allocated in the initialization program.

The main part of the attachment function is very similar to the initialization
program. Following the declarations of variables and again turning off bus error
signalling, the shmget() function is called to get an ID number. However, since
this portion of memory has already been allocated, the ID number returned is the
same one returned by shmget() in the initialization program. Now, the function
shmat() is used to attach the ID number to this application. As in the initializa-
tion program, any time a fatal error occurs, the application must ’clean up’ the
environment before exiting. In this case however, the function shmdt() is used to
detach the application from the allocated memory. Note that this does not free
the mémory, it just releases the application from the memory management table.

The value returned by shmat() is a pointer to the beginning of the shared
memory space. In the case of the control register memory space, this pointer
points to the address of the first control register, and other control registers can be
accessed by adding the appropriate offset to the pointer. The same is true for the
frame buffer. The pointer returned by the corresponding call to shmat() points to
the beginning of the frame buffer.

One of the problems encountered during the development of this code was
the type declarations for the various pointers. Since the board only supports

word addressing, the pointers must be declared as ’shorts’, which are 16-bit words.

75

However, the offsets for the control registers are specified in bytes, so all the offsets

listed in the FG100V user’s manual [11] must be divided by two to get the offset

in words.

A.b FG 100V7 Control Software

With the required memory mapping established, the FG100V can be controlled. -
Control of the board entails setting particular control registers in a particular
sequence to accomplish the required process. The functions written to control the -

FG100V are listed in Appendix B, module xframe.c’, and are outlined here.

1. write_register() : A function to write a data value to a FG100 control register.
Notice that the register offset is divided by 2. As mentioned previously, this —
is because the register offsets are given in bytes, but the FG100 only accepts
word addresses.

2. read_register() : A function to read the value of an FG100 control register.
Again, the register offset is divided by 2 for the same reason as mentioned
above.

(R

3. wait_vb() : This function waits for a vertical blanking period in the video
signal. This is necessary in order to insure that the FG100 grabs a complete
frame.

il

4. ITLinit() : As discussed previously, this function is used to attach X-Radar
to the previously allocated shared meinory spaces. It also sets the FG100
control registers to default values. A series of write_register() calls at the end
of the function set these default values and are explained in the comments.

5. ITIdut() : This function initializes the FG100 hardware color look-up ta-
bles. The FG100 has up to 16 different look-up tables, but for this simple
application, only four are used : one each for RED, GREEN, and BLUE and
one for the intermediate look-up table. In this application, all the look-up — -
tables are configured as linear ramps, and the intermediate look-up table is
installed between the camera and the video A/D converter.

I

6. ITI frame() : This function grabs a frame of video and displays it on the
screen. There are two things that the function must do : first, it must
wait for a vertical blanking period so that a complete frame is digitized,
and secondly, it must wait for any previous command to terminate. The
wait.vb() function accompllshes the first, the second being accomplished by

the while() statement in line 6. At this point, the camera selected is used to

76

q !

inww '
I '
. . 1

DoE=

A

0l

1

set the data to write to the FG100 in order Lo initiate the frame grab. Finally,
the function waits for the frame grab to compleie. The remaining part of
the code reads the video data from the FG100V and forms and displays the
video image on the XD88. The code checks whether X-Radar is displaying
both the top and side view or just one or the other and then displays the
video image in appropriate window on the screen.

. ITI.cont() : This function simply puts the FG100 in the continuous acqui-

sition mode so that the video signal from the cameras can be viewed in
real-time on the external system monitor. This is useful for aligning the
cameras and monitoring the target in the compact range chamber.

. ITI.cam() : This function switches between the two cameras as the current

video source.

. ITI.close() : This function simply releases the shared memory attachment of

X-Radar. This function is only called on exiting the application.

77

REGISTER BASE ADDRESS +

0 |[MEMORY ACCESS CONTROL -
2 HOST MASK B

4 [VIDEO ACQUISITION MASK
6 | PIXEL BUFFER REGISTER _
8 X POINTER -
A Y POINTER _
c| POINTER CONTROL -
E| CPU ADDRESS CONTROL =
10| X SPIN CONSTANT -
12 Y SPIN CONSTANT =
14 PAN A -
16 |LOOKUP TABLE CONTROL =
18 SCROLL A B
1A| BOARD STATUS/CONTROL =
1C ZOOM CONTROL o
1E |[FRAME MEMORY DATA PORT =5
-

Figure 35: FG100V control register map.

78 —

o
I !

S

e

Appendix B
Listing of X-Radar

B.1 Program ITI_init.é

/*
* This program sets up shared memory management for FG100 frame grabber.
*/
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/io/shmphyc.h>
#define REG_PHYS_ADDR 0x0 /* Physical address of control regs. */
#define MEM_PHYS_ADDR 0xA00000 /* Physical address of video memory #/
#define REG_REGION_SIZE 0x2000 /# size of reg. region in bytes %/
#define MEM_REGION_SIZE 0x100000 /* size of mem. region ./
#define REG_KEY 0x1000 /* key for reg shm */
#define MEM_KEY 0x1001 /+ key for mem shm */
#define SHMFLAG (IPC_PHYS | IPC_CREAT | IPC_NOCLEAR | IPC_CI | 0O777)
#define REG_PHYS_SPACE (PHYS_VME|PEYS_VME_SHORT|PEYS_VME_DATA)

#define MEM_PHYS_SPACE (PEYS_VME|PEYS_VME_STD|PHYS_VME_DATA)

extern int errno;
extern char ssys_errlist[];
main()
{
int shmid_reg,shmid_mem;
struct shmBusTable addr;
char sshmat();
signal(SIGBUS,SIG_IGN);
/* set up shared address space for control registers */
it ((shmid_reg = shmget(REG_KEY,
REG_REGION_SIZE,
SHMFLAG,
REG_PHYS_ADDR,
REG_PHEYS_SPACE)) < 0)
I .

79

fprintf(stderr,

"Error allocating shared memory for control registers\n");
fprintf(stderr,"shmget: errmo: %d,%s\n",
errno,sys_errlist[errnol); -
exit(1);

}
addr.start = (caddr_t)REG_PHYS_ADDR;
addr.length = REG_REGION_SIZE;
addr.space = REG_PHYS_SPACE; - T —
addr.uid = 0;
addr.gid = 0;
addr.perm = 0777;
/*
* Allow non-superuser applications to use the space. -
*/
if(shmctl(shmid_reg,SEMPEYS_ALLOW, &addr) !'= 0)
{
fprintf(stderr,"shmctl: %d %s\n",errno,sys_erriist[errnoc]);
exit(1); —
X ' ,
/* -
* Open VME standard space for frame buffer
*/
if ((shmid_mem = shmget(MEM_KEY,
MEM_REGION_SIZE,
SEMFLAG,
MEM_PHYS_ADDR,
MEM_PEYS_SPACE)) < 0)
{
fprintf(stderr,

"Error allocating shared memory for video memory\n");
fprintf(stderr,"shmget: %d -- ¥%s\n",
errno,sys_errlist[errnoc]);
exit(1);

}
addr.start = (caddr_t)MEM_PHYS_ADDR;
addr.length = MEM_REGION_SIZE;
addr.space = MEM_PHEYS_SPACE;
addr.uid = 0;
addr.gid = 0;
addr.perm = 0777;
/*
* Allow non-superuser applications to use the space. S e
./ ,
if(shmctl(shmid_mem, SHMPEYS_ALLOW, kaddr) != 0)
{
fprintf(stderr,”shmectl: %d %s\n",errno,sys_errlist[errnoc]l);
exit(1);
}
exit(0);
}

Uil

]

80

B.2 Program xradar

("

B.2.1 Module xrdr.c
/*

This is the main source file for the compact range image
display program.

* # B = »

*/
o #include "radar.h" /* includes all X includes */
D extern void RePaint();
extern void ITI_init();
extern int ClearRadarData();
Dl /%% ALL Global variables are defined in this module *+s/
= /* GLOBAL X STUFF */
XImage #imi, *im2,*im3, *im4; /+ image vars. for video images */
Display sdisplay;
B Colormap cmap;
GC gel, /* GC for all image display */
gc2; /* GC for cross hairs +/
XFontStruct =font ,font2;
Widget toplevel, top2, shelll,
shell2, shell3,
S shells,
- vinvidget1i, winwidget2,
winwidget3, winwidget4,
popfilel, popfileia, popfile2,popfile3,
error_popup, popmove, exit_message,
scalepopl, scalepop2,
buttoni, button2, button3,
. buttond4, buttondb, buttoné,
- button7, button8, button9,
buttoniO,buttonii,buttoni2,
CE buttoni3,buttoni4d,buttonib,

e buttoni6,buttoni?,
box, color_scale, mono_scale,
levi;
/++ Globals for positions and sizes of graphics window widgets s/
int gxposi,gxpoa2,gxposa,gxpos4;
int gyposi,gypos2,gypos3,gyposs;
R int xsize,ysize;
B unsigned long cols[266];

unsigned long monocols[266];

unsigned long fore, back;

unsigned long red,vhite,blue,black;

/#%+ Globals for multiple screen manipulation ###/

int scrni_flag = 0; /+ flag set if full screen side view */

int scrn2_flag = 0; /* flag set if full screen top view */

= Boolean isar_flag = False; /+ flag set if ISAR image display */

81

Boolean mono = False; /+ flag set if using mono colormap */

widget_struct w_recl, w_rec2; -
/** Globals for radar images **+/ -
/*
* array to hold radar image data.
* structure as follows: -
+ radar_data[i]J[0] = x coord. of ith scattering center
* radar_data[i]J[1] = y coord. of ith scattering center -
+ radar_datali][2] = z coord. of ith scattering center o
+ radar_data[i][3] = magnitude of ith scattering center -
* radar_data[i][4] = spare
* radar_data[i] [6] = spare
./ -
float radar_data[IMAGE_PNTS][6];
int num_pnts = 0; /% number of points in current radar image */ o
float in_angle = 0.0; /+ incident angle of radar signal */
Boolean vidi_flag = False; /+ true if top view in system */
Boolean vid2_flag = False; /* true if side viev in system */ —
rubber_band_data rb_data; /% structure for rubber band lines */
cursor_data cur_data; /* structure for full screen cursor */
line_data 1_data; /# structure for rotationn cursor */
char xscale_str[10], /+ strings to hold scale dimensions */
yscalei_str[10],
yscale2_str[10],
zscale_str[10]; . —
float x_scale = 512./96.; /* default scale factors */ —
float yi_scale = 512./96.; -
float y2_scale = 512./96; o
float z_scale = 512./96.; —
int x_dim, yi_dim, -
y2_dim, z_dim; /% # of pixels for scaling */
int x_offset = 0; /* offsets for adjusting radar image */ —
int yi_offset = O; %ﬁ
int y2_offset = 0;
int z_offset = 0; -
float xy_angle = 0.0; /* rotation angles for radar image */ L
float yz_angle = 0.0; -
int horizontal_flag; /+ flag : True = setting horiz. scaling */
/%% GLOBAL FILE STUFF *#+/ -
char bufferi[80], bufferia[80], buffer2(80]; =
FILE «Id_mapfile;
unsigned char *vidrayi, *vidray2, *isari, *isar2; /+# pointers to raw data */ -
unsigned char sImage! , *Image2; /% pointers to image data */ =
unsigned char *BigImagel, *BigImage2; /* pointers to image data */ -

/##‘*“‘.‘#*‘*“‘i“‘*‘#**#*‘**‘****‘**‘*“‘***‘“‘****‘*“““‘**'#“*‘**‘/
main(argc,argv) TEE e

int &rge;
char sargv(];
{

/% set default iﬁiﬁi sizes and lob;tiéﬁér;/
xsize = 512;

82

ﬂ LuBL
sanl i

(I

ysize = 480;
gxposl = 0;
gyposi = O;
gxpos2 = 512;
gypos2 = 0;
gxpos3 = 0;
gypos3
gxpos4

gypos4
/* prepare everything in startup routine */

initialize();
/* setup user interaction */
xinteract();
/* loop for events %/
XtMainLoop();
} /#end main()*/
L Tty

n e n
(=4

/* initialize -- does general initialization */
initialize()
{

Arg argl10];

int mapchars, bitmap_pad;
unsigned int depth;
mapchars = 512 * 512;

/*
* Allocate memory for raw data arrays.
*/
if(!(vidrayi = malloc(mapchars)) ||
!(vidray2 = malloc(mapchars)) ||
!(isari = malloc(mapchars)) ||
! (isar2 = malloc(mapchars)))
{
printf("Unable to allocate memory for data arrays...\n");
exit(-1);
}
/* allocate memory for small image data arrays */
if(t(Imagel = malloc(2*mapchars)) ||
{(Image2 = malloc(2*mapchars))) /+ 2x for 12 bit depth */
{

printf£("Unable to allocate memory for small image arrays...\n");
exit(-1);
3
/* allocate memory for big image data arrays */
if('(BigImagel = malloc(2*4*mapchars)) ||
'(BigImage2 = malloc(2%4*mapchars)))
{
printf(“Unable to allocate memory for big image arrays...\n");
exit(0);
}
clear_array(vidrayi,mapchars); /* clear arrays */
clear_array(vidray2,mapchars);

83

clear_array(isari,mapchars);
clear_array(isar2,mapchars);
clear_array(Imagel,2+*mapchars);
clear_array(Image2,2+mapchars);
clear_array(BigImagel,2+4*mapchars);
clear_array(BigImage2,2*4+mapchars);
ClearRadarData(); /+* clear radar data array */
/*
* create toplevel shell for the main menu and an application shell
* for graphics widgets
*/
toplevel = XtInitialize(NULL,"X-Radar",
NULL, O,
NULL, NULL); -
top2 = XtCreateApplicationShell("Windows",toplLevelShellWidgetClass,
NULL,0);
XtSetArg(argl0], XtNx, 0);
XtSetArg(argl1], XtNy, 0);
XtSetArg(arg[2], XtNwidth, 1024);
XtSetArg(arg(3], XtRheight,1024);
XtSetArg(arg[4], XtNtransient, True);
XtSetArg(arg{5], XtNallowShellResize, False);
XtSetValues(top2,arg,6);
XtRealizeWidget(top2);
/*
*+ Now that top2 is realized, create colormap and a graphic
* context based on it.
*/
display = XtDisplay(top2); R
cmap = XCreateColormap(display,DefaultRootWindow(display),
DefaultVisual(display, DefaultScreen(display)),
AllocAll);
cmap = XDefaultColormap(display, DefaultScreen(display));
XInstallColormap(display,cmap);
BuildColorMap2();
BuildMonoColormap();
XSetWindowColormap(XtDisplay(top2),XtWindow(top2),cmap);
gcl = XCreateGC(display,DefaultRootWindow(display),0,0);
fore = XBlackPixel(display,DefaultScreen(display));
back = XWhitePixel(display,DefaultScreen(display));
XSetBackground(display,gci,fore);
XSetForeground(display,gci,back);
/* Wow, let’s define some useful colors */
red = cols[245];
blue = cols[130];
white = back;
black = fore;
/*
* create popup shells for graphics widgets
»/ S
XtSetArg(arglo], XtKx, gxposi); -

I | 1 Ul fi

84

1
.

] XtSetArg(argl1], XtNy, gyposi);

- XtSetArg(arg[2], XtNallowShellResize, False);

XtSetArg(arg(3], XtNgeometry, "B12x512");

shelli = XtCreatePopupShell("Windowi",transientShellWidgetClass,
top2,arg,4);

XtSetArg(arg[0], XtRx, gxpos2);

XtSetArg(argl1), XtNy, gypos2);

XtSetArg(argi2], XtNallowShellResize, False);

- XtSetirg(arg(3], XtNgeometry, "512x512");
shell2 = XtCreatePopupShell("Window2",transientShellWidgetClass,
top2,arg,4);

XtSetArg(arg(0], XtNx, gxpos3);
XtSetArg(arg(1], XtNy, gypos3);
XtSetArg(arg(2], XtNallowShellResize, False);
XtSetArg(arg[3]), XtNgeometry, "1024x512");
shell3 = XtCreatePopupShell("Windowd",transientShellWidgetClass,
top2,arg,4);
XtSetArg(arg[0], XtNx, gxpos4);
XtSetArg(arg[1], XtNy, gypos4);
XtSetArg(arg[2], XtNallowShellResize, False);
XtSetArg(arg[3], XtNgeometry, "1024x1024");
N shelld = XtCreatePopupShell("Vindow4",transientShellHidgetClass,
top2,arg,4); '
/*
" % create core widgets to go in the popup shells.
* Note that foreground and backgound colors are reversed so
* that the normal state of the windows is black.
*/
/* windowl and window2 are 512 x 512 =%/
XtSetArg(arg[0], XtNx, 0);
XtSetArg(arg[1], XtNy, 0);
XtSetArg(arg[2], XtNwidth, xsize);
s XtSetArg(argl(3], XtNheight, ysize);
XtSetArg(argl(4], XtNbackground, fore);
XtSetArg(arg[6], XtNforeground, back);
winwidgeti = XtCreateManagedWidget("Windowi",widgetClass,
shelll,arg,6);
XtAddEventBandler(winwidgeti, ExposureMask, FALSE, RePaint,NULL);
‘ XtSetArg(argfo], XtNx, 0);
e XtSetArg(arg[1], XtNy, 0);
XtSetArg(arg(2], XtNwidth, xsize);
L XtSetArg(arg(3], XtNheight, ysize);
P XtSetArg(arg[4], XtRbackground, fore);
XtSetArg(arg(6], XtNforeground, back);
winwidget2 = XtCreateManagedWidget ("Window2",widgetClass,
shell2,arg,6);
XtAddEventHandler(winvidget2, ExposureMask, FALSE, RePaint, NULL);
) /* window3 is 1024 x 512 »/
= XtSetArg(arg[0], XtNx, 0);
— XtSetArg(arg[1], XtNy, 0);
XtSetArg(arg[2], XtNwidth, 2+xsize);

l !

pom
i

= 85

XtSetArg(arg[3], XtNheight, ysize);
XtSetArg(argl4]), XtNbackground, fore);

XtSetArg(arg[6], XtNforeground, back); -
vinwidget3 = XtCreateManagedWidget("Window3",vidgetClass,

shell3,arg,6);

XtAddEventBEandler(winwidget3, ExposureMask, FALSE, RePaint, NULL); -

/* windowd is 1024 x 1024 */

XtSetArg(arg[0], XtRx, 0);

XtSetArg(argl1], XtHy, 0);

XtSetArg(arg{2], XtNwidth, 2+xsize); i . -
XtSetArg(arg(3], XtRheight, 2+ysize);

XtSetArg(argl4], XtNbackground, fore);

XtSetArg(argl6], XtRforeground, back); . -
winwidget4 = XtCreateHanagedHJdget("Hindov4",widgetCluas,
shelld,arg,6); o
XtAddEventHandler(winwidget4, ExposureMask, FALSE; _
RePaint, NULL); -
/*
* allocate structures to hold images ;
imi, im2 for multi-screen display; =
* im3 and im4 for single-screen display.
&
*/ -

depth = XDefaultDepth(display,DefaultScreen(display));
bitmap_pad = 8;

iml = XCreateImage(display, DefaultVisual(dlsplay,
DefaultScreen(display)), -
depth, ZPixmap, 0, Imageil, xsize,

ysize, bitmap_pad, xsize+2);

if(im1==0)] -
{

printf("Allocation of structure for image #1 failed.\n");

exit(0); , .
} 7 ,

im2 = XCreateImage(display, DefanltVisual(display,
DefaultScreen(display)),

depth, ZPixmap, O, Image2, xsize,

ysize, bitmap_pad, xsize*2);

i1£(im2==0)

{

printf("Allocation of structure for image #2 failed.\n");
exit(0);

}

im3 = XCreateImage(display, DefaultVisual(display,
DefaultScreen(display)},

depth, ZPixmap, 0, BigImagel, 2+*xsize,

2+ysize, bitmap_pad, xsizex4);

i2(im3==0)

{ =
printf(“Allocation of structure for image #3 failed.\n"); , — .
exit(0); -

86

lﬂ 1

}
im4 = XCreateImage(display, DefaultVisual(display,
— DefaultScreen(display)),
depth, ZPixmap, O, BigImage2, 2+xsize,
2+*ysize, bitmap_pad, xsizex4);
. if(ima==0)
{
printf("Allocation of structure for image #4 failed.\n");
o exit(0);
- }
ITI_init(); /* init. video board =/
} /%end initialize()*/
= A Ty I T T T I I YT T LY,
BuildColorMap2()
{
int numcolors;
= XColor defs[MAXCOLORS];
int i,j;
numcolors = XDisplayCells(display,DefaultScresn(display));
- for(i=0; i<MAXCOLORS/2; i++) '
{
defa[i] .red =
- defs[i].green =

defs[i) .blue = (i+1)*512 - 1;
defs[i].flags = DoRed | DoGreen | DoBlue;
if(!'XAllocColor(display,cmap,&defs[i]))
printf("Unable to allocate color #%d\n",i);
exit(-1); /* exit =/

}

colsli] = defs[i).pixel;

}

for (i=MAXCOLORS/2+1;i<170;1i+4)
- {

defs[i].red = 0;
defs[i].green = 0;

-— defs[i] .blue = (i+85)%512;

defs[i) .flags = DoRed | DoGreen | DoBlue;

i2('XAllocColor(display,cmap,kdefs[i]))

{

printf("Unable to allocate color #%d\n",i);

exit(-1);

}

- cols[i] = defs[i].pixel;

}

Tor(i=170;1<212;i++) -

{

defs[i].red = O;

dets[i).green = (i+43)*512;

defs[i].blue = 0;

defs([i].flags = DoRed | DoGreen | DoBlue;

_ 87

1f(!XAllocColor(display,cmap,kdefs[i]))

{

printf("Unable to allocate color #)d\n",i); -
exit(-1); -

} -
cols[i] = defs[i].pixel; o
} e
for(i=212;1<258;i++)

{
defs[i].red = i#512; -
defs{i].green = 0;
defs[i].blue = 0;
defs[i}.flags = DoRed | DoGreen | DoBlue; -
i1(1XAllocColor(display,cmap,&defs[i])) -

{
printf("Unable to allocate color #4d\n",i);

exit(-1); -
}

cols[i] = defs[i].pixel;
} -
}

/*

* function to build monochrome color map for images

*/ -
BuildMonoColormap()

{

int numcolors; . -
XColor defs[MAXCOLORS];

int i,3;
numcolors = XDisplayCells(display,DefanltScreen{display)); .
for(1=0; 1<MAXCOLORS/2; i++) -
{ »

defs[i].red = _
defs[i].green = -
defs[i].blue = (i+1)#*512;
defs[i].flags = DoRed | DoGreen | DoBlue;

if(1XAllocColor(display,cmap,kdefs[i])) =
{
printf(“Unable to allocate color #%d\n",i); -

exit(-1); /* exit »/ _ .
} -
monocols[i] = defs[i].pixel;

}

for(i=MAXCOLORS/2+1; i<MAXCOLORS; i++) = -
{

defs[i].red = . —_ .
defs[i].green = ° — .
defs[i].blue = B512#(i-127) - 1; -
defs[i].flags = DoRed | DoGreen | DoBlue;

if(!1XAllocColor(display,cmap,kdefs[il)) —r

-

{

88

v

'ﬂ

-

PUREIE e LY CRE SN TR T AL

printf("Unable to allocate color #%d\n",i);
exit(-1); /+* exit */

}

monocols[i] = defs[i].pixel;

}

}

B.2.2 Module xinterface.c

/* xinterface.c
* File contains source code for initializing the widgets and defining
* callback functions for the X-RADAR program.
®
x/

#include "radar.h" /+* inlcudes all X includes #*/

Vidget create_mag _scale();

/* external function declarations #*/

extern void exit();

extern void pop_down();

extern void multi_screen();

extern void single_screen();

extern Widget CreateTextWidget();

extern Widget CreateErrorWidget();

extern Widget CreateMsgWidget();

extern Widget CreateScaleWidget();

extern void BuildColorMap();

extern int read_video_file();

extern int read_radar_file();

extern void create_rubber_gc();

extern void start_rubber_band();

extern void track_rubber_band();

extern void end_rubber_band();

extern void init_cursor();

extern void track_cursor();

extern void end_cursor();

extern void init_line();

extern void track_line();

extern void end_line();

extern void ITI_cont();

extern void ITI_frame();

extern void ITI_camera();

extern void image_loop();

/* external global variable declarations */

extern XImage *imi, *im2, *im3, *im4;
extern Display *display;

extern Colormap cmap;

extern GC gel;

extern XFontStruct =*font,*font2;
extern Widget toplevel, top2, shelll,
shell2, shell3,

shelld,

89

-2

-

winwidgetil, winwidget2, .

winwidget3, winwidget4, :) 7 N P

popfilel,popfileia,popfile2, -

popfiled,popmove,

scalepopl, scalepop2, —

box,error_popup, exit_message, -

image_message,

buttoni,button2, _

button3,buttond, o

buttonb,buttont, =

button?,buttons,

button9,buttonio, _

buttonii,buttoni2, -

buttoni3,buttonis,

buttonib,buttonis, —

buttoni?, ;;

color_scale, mono_scale; -

extern float radar_data[IMAGE_PNTS] [6];

extern int gxposl,gxpos2,gxpos3,gxposs;

extern int gyposl,gypos2,gypos3,gypos4; -

extern int xsize,ysize;)

extern long cols[];

extern long monocols[]; =

extern int fore,back; ,

extern unsigned int red,vhite,blue,black; _

extern int scrnl_flag, scrn2_flag; —

extern Boolean vidil _flag,vid2_flag; Lod

extern Boolean isar_flag; |

extern Boolean mono; —

extern rubber_band_data rb_data; -

extern cursor_data cur_data;

extern line_data 1_data; =

extern widget_struct w_recl, w_rec2; o

extern char xscale_str[10],yscalel_str[10], -

yscale2_str(10],zscale_str[10];

extern float , x_scale,yl_scale,y2_scale,z_scale;

extern float xy_angle, yz_angle; -

extern int x_dim, yi_dim, y2_dim, z_dim;

extern int x_offset,y_offset,z_offset; -

extern char buffer1[80], bufferia[80], buffer2[80]; -

extern FILE +fd_mapfile;

extern char avidrayl, #vidray2, *isari, *isar2, ¢Imagei, *Image2; .

extern char *Bigimagel, *Biglmage2; L

/* CALLBACK FUNCTIONS */ o o ’ ' -

/tt#tt#tt#tttt‘tttttttttt*t##tt#it#tit#ttt#tt#t#####t#t#t#tt#ttt‘t*ttttttttt‘t/

void VideoFileIn(w, client_data, call_data) -

Vidget w; -

caddr_t client_data, call_data;

{ .

char *file_name; .
-

char top_file[80], side_file[80];

90

€

|

("

t

[

ny oo

N

I

o
i

all

{1

U [

file_name = (char #)client_data; /+» get base file name */
strcpy(top_file,file_name); /+ save to array #*/
strcpy(side_file,file_name);
strcat(top_file," _top"); /* append view */
strcat(side_file,”_side"); /+* to file name #*/
if(read_video_file(top_file,vidrayl)) /+ read top view #*/
{
vidi_flag = True;
CreateImage(vidrayi,imi,xsize,ysize);
Createlmage(vidrayl,im3,2+xsize,2#ysize);
if(scrni_flag) /* in single screen mode */
{
XPutImage(XtDisplay(winwidget4) ,XtWindow(winwidget4),
gei,im3,0,0,0,0,2+x5ize,2*ygize);
XFlush(XtDisplay(winwidget4));
}
else if(!scrn2_flag) /% in multi screen mode */
{
XPutImage(XtDisplay(winwidgeti) ,XtWindow(winwidgetl1),
gel,im1,0,0,0,0,x81ze,ysize);
XFlush(XtDisplay(winwidget1});
}
}
if(read_video_file(side_file,vidray2)) /+ read side view #»/
{
vid2_flag = True;
Createlmage(vidray2,im2,xsize,ysize);
CreateImage(vidray2,im4,2%xsize,2*ysize);
if(scrn2_flag) /* in single screen mode showing #2 #*/
{
XPutImage(XtDisplay(winwidget4) ,XtWindow(winwidget4),
gcl,im4,0,0,0,0,2+x8ize,2*ysize);
XFlush(XtDisplay(winwidget4));

}

else if(!scrni_flag) /% in multi screen mode */

{
XPutImage(XtDisplay(winwidget2),XtWindow(vinwidget2),
gc!,im2,0,0,0,0,x8ize,ysize);
XFlush(XtDisplay(winwidget2)); S

}

}

}

/t###“#lt#‘**‘****‘tt#***#t***lit*#‘*‘l#*##**##i###*tt‘t*tt#‘*#*‘##t*t##ttt/

void VideoFileOut(w, client_data, call_data)

Widget w;
caddr_t client_data, call_data;
{

char *file_name;
char top_file[80], side_file[80];
file_name = (char *)client_data;

/*

91

* build filenames for both views
*/
strcpy(top_file,file_name);
strcpy(side_file,file_name);
strcat(top_file,"_top");
strcat(side_file," _side");
/*
* decide 1f two views exist and write the ones that do
*/
if(vidi_flag)
write_video_file(top_file,vidrayil);
if(vid2_flag)
write_video_file(side_file,vidray2);
}
/‘t#t***#t*#**t!!‘t#ti#‘i#*“ﬁ**‘i*i*i*t!#t#t***.#‘t*“k‘####**‘#“#*‘*‘**“‘#/
void RadarFileIn(w, client_data, call_data)

Widget w;
caddr_t client_data, call_data;
{

char =file_name; DR
isar_flag = False;

file_name = (char *)client_data;
if(read_radar_file(file_name,radar_data))

{

AddRadarImage(imi);

AddRadarImage(im2);

AddRadarImage(im3);

AddRadarImage(im4);

}

} o
/t###ttttttt*ttttt#t*t*tttt#t*ttt*t##t#t*ttt#*##*t*##*ttt#tt*tt#‘tt#t*tt*#ttt#/
void IsarFileIn(w, client_data, call_data)

Widget w;
caddr_t client_data, call_data;
{

char sfilename;

isar_flag = True;

filename = (char »)client_data;
if(read_video_file(filename,isar1))
AddIlarImage(vidrnyi.iaarl,xsize.ynize);

/‘l“**‘t****#####*‘**#i#lt‘t‘t*t#*t‘*it##t###‘#t‘###‘#‘#“i###‘ti‘t#‘t‘tt‘*tt/
void switch_screen(w, closure, call_data)
Widget w; S
caddr_t ciosure. call_data;
{ .
static Arg args[10];
if(!scrni_flag && !scrn2_flag) /+ in multi screen mode #*/
{
if(w == buttonl) /* screen 1 to full screen */
{

92

a0 dl | U I [I |] A [T

Qi

==
=
-

o il

i

]

mremy

=]

|

1

(e

y ‘

{ H

i

!mmu L}
e

]

XtSetArg(args[0],XtNlabel," MULTI - SCREEN MODE ");
XtSetValues(w,args,1);
single_screen(im3);

AddRadarImage(inm3);
scrnl_flag = TRUE;
}

if(w == button2) /* screen 2 to full screen */

{

XtSetArg(args[0],XtNlabel," MULTI - SCREEN MODE ");
XtSetValues(w,args,1);

single_screen(im4);

AddRadarImage(im4);

scrn2_flag = TRUE;

}

}

else if(scrni_flag) /* screeni is full screen %/

{

if(w == button1) /* going to multiscreen mode */

{

XtSetArg(args{[0] ,XtNlabel," WINDOW1 -> FULL SCREEN ");
XtSetValues(w,args,1);

multi_screen();

AddRadarImage(imi);

AddRadarImage(im2);

scrn2_flag = FALSE;

}

if(w == button2) /* going to screen2 full screen */
{

XtSetArg(args[0] ,XtNlabel," MULTI - SCREEN MODE ");
XtSetValues(w,args,1);

XtSetArg(args[0],XtNlabel,"” WINDOW1 -> FULL SCREEN ");
XtSetValues(buttonl,args,1);

single_screen(im4);

AddRadarImage(im4);
scrn2_flag = TRUE;
}
scrnl_flag = FALSE;
}

else if(scrn2_flag) /+ screen2 is full screen »/

p S - ;

if(w == buttonl) /+* going to screeni to full screen */
{

XtSetArg(args[O],Xtﬂlabel." MULTI - SCREEN MODE ");
XtSetValues(w,args,1);

XtSetArg(arg![O],thlnbel." WINDOW2 -> FULL SCREEN ");
XtSetValues(button2,args,1);

single_screen(im3);

AddRadarImage(im3);
scrni_flag = TRUE;
}

if(w == button2) /* going to multi-screen mode */

93

{
XtSetArg(args [0],XtNlabel," WINDOW2 -> FULL SCREEN ") SRR

XtSetValues(w,args,1);
multi_screen();

AddRadarImage(imi1);
AddRadarImage(im2);
scrni_flag = FALSE;
}
‘'scrn2_flag = FALSE;
}
}

/*t###t#t#ttt#t*ttttt*tt#tt#ttt*#t#tt##tt#t##*ttt##tttttt##t#tt#ttttt*t#t#i##t/
void switch_maps(w,client_data,call_data)

Widget w;
caddr_t client_data,call_data;
{

static Arg args[10];

if(mono) /* change flag and menu button */

{

mono = False;

XtSetArg(args[0],XtNlabel,” SWITCE TO MONOCHROME ")
XtSetArg(args[1],XtNwidth,245);

XtSetValues(w,args,2);

XtPopdown(mono_scale);

XtPopup(color_scale,XtGrabNone);

}

else

{

mono = True;

XtSetArg(args[0],XtNwidth,245);
XtSetArg(args[1],XtNlabel," SWITCE TO COLOR ");
XtSetValues{(w,args,2);

XtPopdown(color_scale);

XtPopup(mono_scale,XtGrabNone);

}

XSync(display,0);

/*
» Now, build and display new images
*/

if('scrni_flag &t !scrn2_flag) /* in single screen mode */
WriteMessage('Please wait, this will take awhile..."
XtVWindow(winwidget1),5,506,white);
else
WriteMessage("Please wait, this will take awhile..."
XtWindow(winwidget4),300,1020,white);
Createlmage(vidrayl,imi,xsize,ysize);
CreateImage(vidrayi,im3,2*xsize,2#ysize);
Createlmage(vidray2,im2,xsize,ysize);
Createlmage(vidray2,imé,2+xsize ,2*¢ysize);
if(tscrni_flag &k !scrn2_flag) /* in multi-screen mode */

{

94

L

1l

l

1S

I

L

Ls

[

[
a1

SubRadarImage(im1); /+ clear top window */
XPutImage(XtDisplay(vwinwidget1),XtWindow(winwidget1),
gel,imi,0,0,0,0,x8ize,ysize);

AddRadarImage(im1); /* add radar image to new image */
SubRadarImage(im2); /* clear other window */
XPutImage(XtDisplay(winwidget2),XtWindow(winwidget2),
gcl1,im2,0,0,0,0,x8ize,ysize);

AddRadarImage(im2);

XFlush(XtDisplay(winwidget2));

}
if(scrni_flag) /* in single screen mode */
{
SubRadarImage(im3);
XPutImage(XtDisplay(winwidget4) ,XtWindow(winwidget4),
gc1,im3,0,0,0,0,2+xs8ize,2+ysize);
AddRadarImage(im3);
XFlush(XtDisplay(winwidget4));
}
if(scrn2_flag)
{

SubRadarImage(im4);
XPutImage(display,XtWindow(winwidget4),
gel,im4,0,0,0,0,2+x8ize,2*ysize)};
AddRadarImage(im4);
XFlush(XtDisplay(winwidget4));
}
if(!scrni_flag && !scrn2_flag) /* in single screen mode */
WriteMessage("Please wait, this will take awhile...",
XtWindow(winwidget1),5,505,black);
else
WriteMessage("Please wait, this will take awhile...",
XtWindow(winwidget4),300,1020,black);
}

/###*tttt#tt##t‘#***#***i*tt#tt*itﬁtl#‘t‘*‘t*#“##‘t‘#*##i‘#“ti*ii‘*“t##‘###/

void ShiftImage(w, closure, call_data)
Widget w; ’
caddr_t closure, call_data;
{
Time time;
/*
* can’'t shift ISAR image
*/
if(isar_flag)
{
Error_window(5,0,NULL);
return;
}
/*
* must be in single screen mode to set offsets : do error window
* and return.

*/

95

if(('scrni_flag) && (!scrn2_flag))

B¢

Error_window(4,0,NULL);
return;
}

/* set up cursor stuff =/
XtAddEventHandler(winwidget4, PointerMotionMask,
False, track_cursor, &kcur_data);
XtAddEventHandler(winwidget4, ButtonPressMask,
False, end_cursor, &cur_data);
XGrabPointer (XtDisplay(winwidget4),
XtWindow(winwidget4),True, o
PointerMotionMask | ButtonPressMask ,
GrabModeAsync, GrabModeAsync, XtWindow(winwidget4),
XCreateFontCursor(XtDisplay(winwidget4),XC_crosshair),
time); e i
init_cursor(w,&cur_data);- : e e

}

/t#t#t#######t###t*##“i}@#**fi*}#*#t{rf‘ft?*it#####*tt##‘*######‘#i#t##tttt###t/

void Rotatelmage(w,client_data,call_data)
Widget w;
caddr_t call_data,client_data;
{
Time time;
/*
* can’t rotate ISAR image
*/
if(isar_flag)
{
Error_window(5,0,NULL);
return;
}
/* - R : S oo

*+ must be in single screen mode to do rotation : do error window
+ and return.

*/

if((1scrni_flag) &% (!scrn2_flag))
{

Error_window(6,0,NULL);

return; :

}

/* set up cursor stuff */
XtAddEventBandler(winwidget4, PointerMotionMask,
False, track_line, &1_data); ,
XtAddEventHandler(winwidget4, ButtonPressMask,

False, end_line, &1_data);
XGrabPointer(XtDisplay(winwidget4),
XtWindow(vinwidget4),True,

PointerMotionMask | ButtonPressMask ,

GrabModeAsync, GrabModeAsync, XtWindow(winwidget4),
XCreateFontCursor(XtDisplay(winwidget4),XC_crosshair),

96

| L (NI iy

[N

"
a

I
i
|

il |

(I
.

'RTRL]

("

‘ (I

time);
init_line(winwidget4,&1 _data);
}

/l#.*“#*‘#‘**“*“*‘#i**#‘“"*‘*“““‘*##‘#**t#*““‘t‘*‘#““i“#“““*“/
void PopupScalei(w, client_data, call_data) S -

Widget w;

caddr_t client_data, call_data;

{

if(isar_flag) /+* can’t scale isar image */
{

/* pop-up error message and exit function */
Error_window(5,0,NULL); »
return;
}
/*

* check to see if in window #1 single screen mode

*/
if(scrni_flag)
{

/* set up rubber band stuff */
XtAddEventHandler(winwidget4, ButtonPressMask,
FALSE, start_rubber_band, &rb_data);
XtAddEventHandler(winwidget4, ButtonMotionMask,
FALSE, track_rubber_band, &rb_data);
XtAddEventHandler(winwidget4, ButtonReleaseMask,
FALSE, end_rubber_band, &rb_data);
XGrabButton(XtDisplay(winwidget4), AnyButton, AnyModifier,
XtWindow(winwidget4), TRUE,
ButtonPressMask | ButtonMotionMask | ButtonReleaseMask,
GrabModeAsync, GrabModeAsync, XtWindow(winwidget4),
XCreateFontCursor (XtDisplay(winwidget4) ,XC_crossheir));
XtPopup(scalepopi, XtGrabNone);

}

else
Error_window(3,0,NULL);

}

L T T e et Y
void PopupScale2(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

‘it (isar_flag)

{

/% pop-up error message and exit function */

return;
3
/*
* check to see if in window #2 single screen mode
./
it (scrn2_flag)

97

{

/* set up rubber band stuff */
XtAddEventHandler (winwidget4, ButtonPressMask,
FALSE, start_rubber_band, &rb_data);
XtAddEventHandler(winwidget4, ButtonMotionMask,
FALSE, track_rubber_band, &rb_data);
XtAddEventEandler(winwidget4, Buttonﬂeleasenask
FALSE, end_rubber_band, &rb_data);
XGrabButton(XtDisplay(winwidget4), AnyButton, AnyModifier,
XtWindow(winwidget4), TRUE,
ButtonPressMask | ButtonMotionMask | ButtonRelaaseHask
GrabModeAsync, GrabModeAsync, XtWindow(winwidget4),
XCreateFontCursor(XtDisplay(winwidget4) ,XC_crosshair));
XtPopup(scalepop2, XtGrabNome);

}

else
Error_window(3,0,NULL);

}

/tt#‘tt‘t#‘###‘ﬁ#tt**t*ti*##*##*##*####**‘###****‘###*###t*tt#t‘#tt‘%““‘t‘#t/

void SetScalei(w, client_data, call_data)

Widget w;
caddr_t client_data, call_data;
{

char sedummy;

char #*temp; S
/* remove event handlers and button grab =/
XtRemoveEventHnndler(vinwidget4, ButtonPressMask,
FALSE, start_rubber_band, &rb_data);
XtRemoveEventHandler(winwidget4, ButtonReleaseMask,
FALSE, end_rubber_band, &rb_data);
XtRemoveEventEandler(91nw1dget4 ButtonMotlonHask
FALSE, track_rubber_band, &rb_data);
XUngrabButton(XtDisplay(winwidget4), AnyButton,AnyModifier,
XtWindow(winwidget4));

x_scale = (float)(x_dim)/2./atof(xscale_str);
yi_scale = (float)(yi_dim)/2./atof(yscalel_str);

}

e L L D I T Y T L T T T T T Y PP P PP T ooy
void SetScnle2(w, client _data, call dnta)

Widget w;
caddr_t client_data, call_data;
{

/* remove svent handlers and button grab +/
XtRemoveEventHandler(winwidget4, ButtonPressMask,

FALSE, start_rubber_band, &rb_data);
XtRemoveEventHandler(winwidget4, ButtonReleaseMask,

FALSE, end_rubber_band, &rb_data);
XtRemovaEventHandler(winwidget4, ButtonMotionMask,

FALSE, track_rubber_band, &rb_data);
XUngrabButton(XtDisplay(winwidget4), AnyButton,AnyModifier,
XtWindow(winwidget4));

98

0 1 I]

4l Ll M

‘ pme
v

v
[T}

S
Ll

y2_scale = (float)(y2_dim)/2./atof(yscale2_str);
z_scale = (float)(z_dim)/2./atof(zscale_str);
}
/‘#‘*i‘t‘*t*##“‘#*##!tti““‘#*#“*t#"*ﬁ‘.*#‘.#tt.tl.#tt‘t.“i*‘t‘tt#‘#i‘**‘/
void RadarFilePopup(w, closure, call_data)
Widget w;
caddr_t closure, call_data;
{
XtPopup(popfile2,XtGrabNone);
}

void VideoFilePopup(w, closure, call_data)
Widget w;
caddr_t closure, call_data;

{
XtPopup(popfilel,XtGrabNone);
}

void VideoFilePopupia(w, client_data, call_data)
Widget w;
caddr_t client_data, call_data;

{

XtPopup(popfileia,XtGrabNone);

}

void IsarFilePopup(w, client_data, call_data)
Widget w;

caddr_t client_data, call_data;

{

XtPopup(popfile3,XtGrabNone);

}

/#t‘t##t#iti*t##‘*####t#i**i###‘t#ﬁ*##ttt‘####i#t#‘#t#t#t#*‘#t#t“ii#t“#“*#*/

/* video board callbacks */

void vid_cont(w, client_data, call_data)
Widget w;
caddr_t client_data, call_data;

{
ITI_cont();
}
void vid_single(w, client_data, call_data))
Widget w;
caddr_t client_data, call_datg;
{

unsigned char *camera;
camera = (unsigned char *)client_data;
ITI_frame(*camera);

}

void switch_camera(w, client_data, call_data)
Widget w;
caddr_t client_data, call_data;

{

99

static char label_string[30]; - . ,
static Arg arg[] = { {XtNlabel, (XtArSVal)kgbgl,str;ngl,}1 e
unsigned char *camera; .
camera = (unsigned char *)client_data;
scamera = ~(*camera); /% slternative is camera #1 (side) */
if (+camera)
{
sprintf(label_string, " SWITCH TO OVERHEAD CAM ");
XtSetValues(w,arg,1);
}

else

{
sprintf(label_string, " SWITCH TO SIDEVIEW CAM ");

XtSetValues(w,arg,1);
}
ITI_camera(*camera);

}

-/ti‘##t***##**##t**It**###‘t#*t#*#*#t#i#t*t#*t###*‘#tt*###t*##t‘tt##t##t**t#ii*/

void Bye(w, closure, call_data)
Widget w;
caddr_t closure, call_data; .

{

printf("Bye\n");

ITI_close(); /* close VME allocations */
XtDestroyWidget(toplevel); /* destroy mll widgets */

XtDestroyWidget (top2);

XFreeColormap(XtDisplay(XtParent(w)),cmap); /* free colormap alloc. */
fflush(stdout); /* clean I/0 channel */

exit (0);

}

JARer sk AR AR AR AR R AR SRR R R R R AR AR AR b bRt bbb a s/
/+ setup main user interface with Widgets */
void xinteract()
{
Arg args[10];
Cardinal i;
char name[100];
static unsigned char cam = 0; /* init. to overhead camera */
static XtCallbackRec callback[2];
static XtPopdownIDRec pdreci,pdrec2;
font=XLoadQueryFont (display,"PellucidaSerif14B");
font2=XLoadQueryFont (display,"PellucidaSerif12B");
/*
* Setup arguments for toplevel shell for menu
+/
XtSetArg(args[1], XtNwidth, 268);
XtSetArg(args[2], XtFheight, 1024);
XtSetArg(args[3], XtNtransient, TRUE);
XtSetArg(args[4], XtFx, 1024);
XtSetArg(args[6], XtNy, 0);

100

| (] a0 m

L

|

XtSetArg(args[6], XtNforeground,fore);
XtSetArg(args[7], XtNbackground,back);
XtSetValues(toplevel,args,8);
/*
* use same arguments for box for menu
+/
box = XtCreateManagedWidget ("BOX", boxWidgetClass,
toplevel, args, EIGHT);
/*
¢+ create menu items to go in box
*/
XtSetArg(args[0], XtNfont, font);
XtSetArg(args[1], XtNforeground,white);
XtSetArg(args[2], XtNbackground,blue);
XtSetArg(args[3], XtNwidth,245);
XtSetArg(args[4], XtNheight,40);
XtCreateManagedWidget("OSU/NASA XRADAR", labelVWidgetClass, box, args,
XtSetArg(args[0], XtNfont, font2);
XtSetArg(args[1], XtNforeground,vhite);
XtSetArg(args[2], XtNbackground,blue);
XtSetArg(args[3],XtNwidth,245);
XtCreateManagedWidget(" FILE 1/0 ",
labelWidgetClass, box, args, 4);
XtSetArg(args[0], XtNforeground,blue);
XtSetArg(args[1], XtNbackground,white);
XtSetArg(args[2],XtNwidth,245);
buttonB = XtCreateManagedWidget(” READ VIDED IMAGE FILE ",
commandWidgetClass, box, args, 3);
XtSetArg(args[0], XtNforeground,blue);
XtSetArg(args[1], XtNbackground,white);
XtSetArg(args[2] ,XtNwidth,245);
button® = XtCreateManagedWidget(" WRITE VIDEO IMAGE FILE ",
commandWidgetClass, box, args, 3);
XtSetArg(args[0], XtNforeground,blue);
XtSetArg(args[1], XtNbackground,white);
XtSetArg(args[2],XtNwidth,245);
button? = XtCreateManagedWidget(" READ RADAR IMAGE FILE ",
commandWidgetClass, box, args, 3);
XtSetArg(args[0], XtBforeground,blue);
XtSetArg(args[1], XtNbackground,white);
XtSetArg(args[2], XtFwidth,245);
buttonif = XtCreateManagedWidget("READ ISAR IMAGE FILE",
commandWidgetClass,box,args,3);
XtSetArg(args[0], XtNforeground,blue);
XtSetArg{(args[1], XtNbackground,white);
XtSetArg(args[2]), XtNwidth, 245);
buttonib = XtCreateManagedWidget("REAL TIME DP",
commandWidgetClass, box, args,3);
XtAddCallback(buttonlE,XtHcallbnck.imnge_loop,HULL);
XtSetArg(args[0], XtKfont, font2);
XtSetArg(args[1], XtNforeground,white);

101

B);

XtSetArg(args[2], XtKbackground,blue);
XtSetArg(args[3] ,XtNwidth,245);
XtCreateManagedWidget(" VIDED IHAGE CONTROL ",

labelWidgetClass, box, args, 4);

callback[0].callback = switch_screen;
XtSetArg(args[0], XtNcallback, callback);
XtSetArg(args[1], XtNforeground,blue);
XtSetArg(args[2], XtNbackground,white);
XtSetArg(args[3] ,XtNwidth,245);
buttonl = XtCreateManagedWidget(" WIFDOWi -> FULL SCREEN ",
commandWidgetClass, box, args, 4);
callback[0].callback = switch_screen;
XtSetArg(args[0], XtNcallback, callback);

XtSetArg(args[1], XtNforeground,blue);

XtSetArg(args[2], XtNbackground,white);

XtSetArg(args[3] ,XtNwidth,245);

button2 = XtCreateManagedWidget(" WINDOW2 -> FULL SCREEN ",
commandWidgetClass, box, args, 4);

callback[0].callback = switch_maps;

XtSetArg(args[0], XtRcallback, callback);

XtSetArg(args[1]}, XtNforeground, blue);

XtSetArg(args[2), XtNbackground, white);

XtSetArg(args[3], XtNwidth,245);

buttoni? = XtCreateManagedWidget (" SWITCH TO MONO MAP ",

commandWidgetClass,box,args,4);

XtSetArg(args[0], XtNfont, font2);
XtSetArg(args[1], XtNforeground, white);
XtSetArg(args[2], XtNbackground, blue);
XtSetArg(args[3],XtNwidth,245);
XtCreateHanégedHidget(" VIDEC BOARD CONTROL ",

labelVWidgetClass, box, args, 4);

XtSetArg(args[0], XtNforeground, blue);

XtSetArg(args[1], XtNbackground, white);

XtSetArg(args[2] ,XtNwidth,245);

buttonii = XtCreateManagedWidget(" LIVE VIDEO TO MONITOR ",
commandWidgetClass, box, args, 3); . = . _
XtAddCallback(buttonii,XtNcallback,vid_cont ,FULL);
XtSetArg(args[0], XtNforeground, blue);

XtSetArg(args[1], XtNbackground, white);
XtSetArg(args[2] ,XtNwidth,245);

buttoni2 = XtCreateManagedWidget (" FRAME GRAB TO COMPUTER ",
commandWidgetClass, box, args, 3);
XtAddCallback(buttoni2,XtNcallback,vid_single,kcam);
XtSetArg(args{0], XtNforeground, blue);

XtSetArg(args{1], XtNbackground, white);

XtSetArg(args[2] ,XtNwidth,245);

buttoni3 = XtCreateManagedWidget(" SWITCH TO SIDEVIEW CAM ",
commandWidgetClass, box, args, 3);
XtAddCallback(buttoni3,XtNcallback,switch_camera,kcam);
XtSetArg(args[0], XtNfont, font2);

XtSetArg(args[1], XtNforeground, white);

102

4| 0 0 i | L 0 | L (NI i e« W W W em g

] XtSetArg(args{2], XtKbackground, blue);
- XtSetArg(args[3] ,XtNwidth,245);
XtCreateManagedWidget(" RADAR IMAGE CONTROL ",
labelWidgetClass, box, args, 4);
callback[0] .callback = ShiftImage;
XtSetArg(args[0], XtNcallback, callback);
XtSetArg(args[1], XtNforeground, blue);
XtSetArg(args[2], XtNbackground, white);
-— XtSetArg(args[3],XtNwidth,245);
button8 = XtCreateManagedWidget(" SEIFT RADAR IMAGE ",
commandWidgetClass, box, args,4);
callback([0].callback = Rotatelmage;
XtSetArg(args[0], XtNcallback, callback);
XtSetArg(args[1], XtNforeground, blue);
XtSetArg(args[2], XtNbackground, white);
XtSetArg(args (3] ,XtNwidth,245);
button8 = XtCreateManagedWidget(" ROTATE RADAR IMAGE ",
commandWidgetClass, box, args,4);
XtSetArg(args[0], XtNforeground, blue);
XtSetArg(args[1], XtNbackground, white);
XtSetArg(args[2],XtNwidth,245);
L e button3 = XtCreateManagedWidget(" WINDOW1 SCALE FACTORS ",
commandHidgetClass, box, args, 3);
XtSetArg(args[0], XtRforeground, blue);
Coo XtSetArg(args[1], XtNbackground, white);
R 2= XtSetArg(args[2] ,XtNwidth,245); .
button4 = XtCreateManagedWidget (" WINDOW2 SCALE FACTORS ",
commandWidgetClass, box, args, 3);
XtSetArg(args[0], XtNfont, font2);
XtSetArg(args[1], XtRforeground, white);
XtSetArg(args[2], XtWbackground, blue);
XtSetArg(args[3],XtNwidth,246);
T = XtCreateManagedWidget(" SYSTEM CALLS ",
labelWidgetClass, box, args, 4);
callback[0] .callback = Bye;
XtSetArg(args[0], XtNcallback, callback);
XtSetArg(args[1], XtHforeground, blue);
XtSetArg(args[2], XtRbackground, white);
XtSetArg(args[3] ,XtNwidth,246);
button8 = XtCreateManagedWidget(" EXIT ",
commandWidgetClass, box, args,4);
/*
* create 2 popup magnitude color bars, one for color, the other for mono
*/
color_scale
mono_scale
/*
* create popup text windows for file name entry
*/
popfilel = CreateTextWidget(toplevel,"Enter video image filename :",
VideoFileIn,buffer1,512,800);

(

E_2
K3

create_mag_scale(toplevel,cols);
create_mag_scale(toplevel,monocols);

= 103

popfileia = CreateTextWidget(toplevel ,"Enter filename for video image :

VideoFileOut,bufferia,512,800);
popfile2 = CreateTextWidget(toplevel, "Enter radar image £ilename ",
RadarFilelIn,buffer2,512,800);
popfile3 = CreateTextWidget(toplevel,”Enter ISAR image filename :",
IsarFileIn,buffer2,512,800);
/*
* add callbacks to appropriate buttons to activate popups;
* this works better than installing at creation.
*/
XtAddCallback(button8,XtNcallback »VideoFilePopup,RULL);
XtAddCallback(button7,XtNcallback,RadarFilePopup,NULL);
XtAddCallback(buttond,XtNcallback,VideoFilePopupia,NULL);
XtAdanllbnck(buttonie,XtHcallback,I!anilePopup,NULL);
/*
* create a popup shell for displaying error messages
*/
error_popup = CreateErrorWidget(toplevel);
/*
* create two popups for scaling the radar image and register
* callbcks to pop them up.
*/
scalepopl = CreateScaleWidget(toplevel,
" ——-- SCALE FACTORS FOR WINDOW #1 ---- ",
"Set horizontal dimension (inches) ",
"Set vertical dimension (inches) ",
SetScalel,xscale_str,yscalel_str,
&vw_rec1,0,850);
scalepop2 = CreateScaleWidget(toplevel,
" —~~-- SCALE FACTORS FOR WINDOW #2 ---- ",
"Set horizontal dimension (inches) ",
"Set vertical dimension (inches) ",
SetScale2,yscale2_str,zscale_str,
&w_rec2,512,850);
XtAddCallback(button3, XtNcallback,PopupScalei,RULL);
XtAddCallback(button4, XtNcallback,PopupScale2,NULL);
/*
* set up gc for rubber band lines
*/
create_rubber_gc(winwvidget4,&rb_data);
/*
* realize toplevel widget and all of its children
*/
XtRealizeWidget (toplevel);
XSetWindowColormap(XtDisplay(toplevel) ,XtWindow(toplevel),cmap);
XtPopup(shelli, XtGrabNone);
XSetWindowColormap(XtDisplay(shelll),XtWindow(shelll),cmap);
XtPopup(shell2, XtGrabNone);
XSetWindowColormap(XtDisplay(shell2),XtWindow(shell2),cmap);
XtPopup(shell3, XtGrabNone);
XSetWindowColormap(XtDisplay(shell3d),XtWindow(shell3),cmap);

104

all

|

n

rl

e

B
—

[

XtPopup(color_ncale,XtGrabNéne);
}

Widget create_mag_scale(parent,colormap)
Widget parent;

unsigned long *colormap;

{

Arg args(10];

Widget popup,box;

char geom_str{20];

int x_size,y_size;

XtTranslations trans_table;

/*
* create a popup shell
x/

x_size = 230;

y_size = 300;

sprintf(geom_str,"%1ix%1i",x_size,y_size);
XtSetArg(args[0], XtNy, 675);

XtSetArg(args{1], XtNx, 1030);

XtSetArg(args[2], XtNgeometry,geom_str);
XtSetArg(args[3], XtNallowShellResize,False);
popup = XtCreatePopupShell('popup",transientShellWidgetClass,
parent,args,4);

XtSetArg(args[0],XtNheight,300);
XtSetArg(args[1],XtNwidth,230);
XtSetArg(args[2],XtNforeground,fore);
XtSetArg(args{3],XtRbackground,back);

box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,4);
/* create a simple color bar for magnitude scale */
XtSetArg(args[0],XtNbackground,colormap[265]);
XtSetArg(args[1] ,XtNforeground,vhite);
XtSetArg(args[2] ,XtNfont,font2);
XtSetArg(args[3],XtNheight,50);
XtSetArg(args[4],XtNwidth,230);
XtCreateManagedWidget(" O dB ",labelWidgetClass,
box,args,b); :)
XtSetArg(args[0] ,XtFbackground,colormap[230]);
XtCreateManagedWidget(" -5 dB ",labelWidgetClass,
box,args,b5);

XtSetArg(args[0] ,XtFbackground,colormap[205]);
XtCreateManagedWidget(" -10 dB ",labelWidgetClass,
box,args,5);
XtSetArg(args[0],XtNbackground,colormep[180]);
XtCreateManagedWidget(" -15 dB ",labelWidgetClass,
box ,args,b);
XtSetArg(args[0],XtRbackground,colormap[166]);
XtCreateManagedWidget(" -20 dB “,labelVWidgetClass,
box,args,5);
XtSetArg(args[0],XtNbackground,colormap[130]);
XtCreateManagedWidget(" -25 dB ",labelWidgetClass,

105

/#tt‘#“#*####‘i#*#**#**t##*tt#*t##*‘t##‘#‘#‘#**##*#‘.#t##t#tt#t#t‘t*‘/

box,args,5);
return(popup) ;

}

B.2.3 Module ximage.c
/* ximage.c

* Tfile of routines for manipulating video and radar images
*/
#include “radar.h" /+ includes all X includes */
/*+* Function prototypes for this module ##x/
void start_rubber_band();
void end_rubber_band();
void track_rubber_band();
void init_cursor();
void track_cursor();
void end_cursor();
void init_line();
void track_line();
void end_line();
void multi_screen();
int AddRadarImage();
int SubRadarImage();
int ClearRadarData();
int single_screen();
extern double square();
extern int randf();
extern rotate_point();
extern XImage *imi,+im2,*im3,*im4;
extern Display *display;
extern Colormap cmap;
extern GC gcl,ge2;
extern Widget toplevel, top2,
shelll, shell2,
shell3, shell4,
winwidget1, winwidget2,
winvidgetd, winwidget4,
popfile],popfile2,error_popup,popmove,
image message,
box,buttoni,button2,
button3,buttond,
buttonb,buttons,
button7,buttons,
buttond,buttonio,
buttonii,buttoni2,
button13d,buttoni4g;

extern int scrni_flag,scrn2_flag; /* flags set if in single screen mode */

extern Boolean mono; /+ flag set if using mono colormap */

extern int num_pnts; /+ # of points in current radar image */

extern float in_angle; /* incident angle of plane wave */

106

;|

{ 0 r . u N I |

]
1
[l

(!

LN

i

|1
|

al

r}
-

e

1

(e

'
b

i

extern Boolean vidi_flag,vid2 flag;
extern Boolean isar_flag;
extern widget_struct w_reci, w_rec2;
extern rubber_band_data rb_data;
extern cursor_data cur_data;
extern line_data 1_data;
extern unsigned long cols[256];
extern unsigned long monocols[266];
extern char bufferi(80], buffer2{80];
extern int gxposi, gyposli,
gxpos2, gypos2,
gxpos3, gypos3,
gxpos4, gypos4,
xsize, ysize,
screen;
extern unsigned fore,back,red,white,blue,black;
extern float radar_data{IMAGE_PNTS][6];
extern char *vidrayl, #*vidray2, *isari, #*isar2;
extern char *Imagel, *Image2, *Biglmagel, *Biglmage2;
extern float x_scale, yi_scale, y2_scale, z_scale;
extern f{loat xy_angle, yz_angle;
extern int x_dim, yi_dim, y2_dim, z_dim;
extern horizontal_flag;
extern int x_offset,yl _offset,y2_offset,z_offset;

/#*1ttttt*ttt#i#titt*tt*t###t###t##t##‘t##t*#tt##***##*#i‘#i###*“tt#t#i#i‘t“/

CreateImage(raw_image,image.xsize,ysize)
char *raw_image;

XImage *image;

int xsize,ysize;

{

int x,y,x2,y2,x21,y21;

int xlimit,ylimit;

unsigned char dat;

unsigned long *colormap;
unsigned long color;

if(mono) colormap = monocols;

else colormap = cols;
if(xsize == B12) /% doing small image */
I s ;

for(y=0; y<ysize; y++)
for(x=0; x<xsize; x++)

{
XPutPixel(image,x,y,colormap[*(raw_image + x + y+512)]);
}
}
else /* doing big image */
{
xlimit = xsize/2; /*» for speed */
ylimit = ysize/2;

for(y=0;y<ylimit;y++) /* loop thru raw data #/
{

107

y2 = 2+y; /+ for speed */

y21 = y2+1;
for(x=0;x<xlimit;x++) /#+ dup. pixels into big image */
{
x2 = 2#x; /+* for speed */ e e : -
x21 = x2+41;

color = colormap[*(raw_image + x + Bi2*y)];
XPutPixel(image,x2,y2,color);
XPutPixel(image,x21,y2,color);
XPutPixel(image,x2,y21,color);
XPutPixel(image,x21,y21,color);

}
L L L et L L
AddRadarImage(image)

XImage *image;

{

unsigned int width,height; /* size of image point */
unsigned int px,py; /* screen coords. of point */
unsigned int magt;
int i;
float x,y,z; /* temp. vars. */
float rin_angle;
unsigned long *colormap;
if(mono) colormap = monocols; /+ set color map pointer */
else colormap = cols;
width = height = 6;
rin_angle = -PI/180.#in_angle;
if(image == iml)
{
for(i=0;i<num_pnts;i++)
{
x = radar_datali}[0];
y = radar_datalil[1];
rotate_point(&x,ky,xy_angle);
px = rndf(x_scale*y - width/2. + x_offset + 2E8);
Py = rndf(yi_scalesx - height/2. + yi_offset + 240);
magt = rndf(255+80+1log10((float)(radar_datalil[3])));
XSetForeground(display,gci,colormap[magt]);
XFillRectangle(display,XtWindow(winwidget1),
gcl,px,py,width,height);
}
if('isar_flag)
drav_arrow(white,rin_angle+xy_angle); /« draw arrow #/

}

1£(image == im2)

{
for(i=0;i<num_pnts;i++)
{

108

{4/

n

o

rm

v

T
il

i

U

L.

y = radar_data[i][1];
z = radar_data[i][2];
rotate_point(&x,&y,yz_angle);
px = rndf(fabs(y2_scale)*y - width/2. + y2_offset + 256);
Py = rndf(-fabs(z_scale)*z - height/2. + z_offset + 240);
magt = rndf(255+80%1og10((float) (radar_datali][3])));
XSetForeground(display,gci,colormapmagt]);
XFillRectangle(display,XtWindow(winwidget2),

gel,px,py,vwidth,height);

}

}

if(image == im3)

{

for(i=0;i<num_pnts;i++)

{

x = radar_data[i][0];
y = radar_data[i][1];
rotate_point(&x,ky,xy_angle);
px = rndf(2+(fabs(x_scale)*y - width/2. + x_offset + 266));
Py = rndf(2*(fabs(yi_scale)*x - height/2. +
yi_offset + 240));
magt = rndf(255+80*1log10((float)(radar_datali}[3])));
XSetForeground(display,gci,colormap[magt]);
XFillRectangle(display,XtWindow(winvidget4),
gcl,px,py,2+«width,2+height);
}
it('isar_flag)
drav_arrow(white,rin_angle+xy_angle);

}

if(image == im4)

{
for(i=0;i<num_pnts;i++)
{

y = radar_data[i}[1];
z = radar_data[i][2];
rotate_point(&x,ty,yz_angle);
Px = rnd?(2+(fabs(y2_scale)*y - width/2. +
y2_offset + 258));
Py = rndf(2+(-fabs(z_scale)*z - height/2. +
z_offset + 240));
magt = rndf(255+80*1og10((float) (radar_datali][31)));
XSetForeground(display,gci,colormap[magt]);
XFillRectangle(display,XtWindow(winwidget4),
gcl,px,py,2+width,2+height);
}
}
}
L T T YT P LTI T oIy,
ClearRadarData()
{
int i,j;

109

Tor(1=0;1<IMAGE_PNTS;i++)

for(j=0;j<6;j++)
radar_data[i] [j] = 0;
num_pnts = 0;

} L , .]
/‘*#****“##*“‘##*##l#*#*‘t‘ﬁ‘i"#““'t‘#!‘##“‘##‘*‘#t.#‘.'*'**‘#i‘#*i#“*‘/
SubRadarImage(image)
XImage *image;
{
if(image == im1)
{

XClearArea(display,XtWindow(winwidget1),0,0,0,0,False);
}
if(image == im2)
{

XClearAren(display,XtHindow(winwidgetz),0,0,0,0,False);
}
if((image == im3) | (image == im4))
{

XClearArea(display,XtWindow(winwidget4),0,0,0,0,False);
}
}

/‘*#‘**t##‘tt######tt###t‘##t‘*‘*##tt##tt‘t**##‘*t“*.##t‘##“‘t‘!i*#**t“‘#“/

AddIsarImage(video,isar)

char *video, *isar;

{

int x,y,xs,ys;

unsigned char dat;

unsigned long *colormap;

int x2,y2,x221,y21;

if(mono) colormap = monocols;

else colormap = cols;

xs = ys = b12; :

it(!'scrni_flag && !scrn2_flag) /* in single screen mode */
WriteMessage(''Please wait, this will take avhile...",
XtWindow(winwidgeti),5,505,white);
else
WriteMessage("Please wait, this will take awhile...",
XtWindow(winvidget4),300,1020,vhite);

for{ y=0; y<ys; y++)

Tor(x=0; x<xB5; X++)

{

if(+(isar + x + B12#*y))

dat = *(isar + x + B12*y);

else

dat = *(video + x + Bi2#y);

XPutPixel(imi,x,y,colormap[dat]);

}

/* Now, do big image */

for(y=0;y<ys;y++) /* loop thru raw data */

110

CIRIITR {

|

(IR

o

l (L)
s

il

i e

('

y2 = 2*y; /+ for speed */
y21 = y2+1;
for(x=0;x<xs8;x++) /* dup. pixels into big image */
{
if(*(isar + x + 512*y))
dat = *(isar + x + 512%y);

else

dat = *(video + x + 512%y);
x2 = 2%x;
x21 = x2+1;

XPutPixel(im3,x2,y2,colormap(dat]);
XPutPixel(im3,x21,y2,colormap[dat]);
XPutPixel(im3,x2,y21,colormap[dat]);
XPutPixel(im3,x21,y21,colormap[dat]);

*

* Now, need to display appropriate image: iml or im3
* and erase message.

*/

if('scrni_flag &% !scrn2_flag)

{ ,
XPutImage(display,XtWindow(winwidget1),gecl,im1,0,0,0,0,
Xs8,y8);

}
}
/

WriteMessage("Please wait, this will take awhile...",
XtWindow(winwidget1) ,5,505,black);

}

else

{
XPutImage(display,XtWindow(winwidget4),gc!,im3,0,0,0,0,
2%x8,2*ys) ;

WriteMessage(''Please wait, this will take awhile...",
XtWindow(winwidget4),300,1020,black);

}
}

/****itt**#*#***********************#***************###*i#*i***********#**ii**/

draw_arrow(color,angle)
unsigned long color;
float angle;
{
int re,rp, /* radius of end and head of arrow x/
ra, /* length of arrow head */
xe,ye, /* coords. of end of arrow */
Xp,yp, /* coords of point of arrow */
x1,x2, /* x coords of arrow head lines */
y1,y2; /* y coords of arrow head lines */
float phi; /* angle of arrow head lines with shaft */
re = 239;

rp = 199;
ra = 8;
phi = P1/6.;

111

xe = rndf (255 - re
ye = rndf(230 + re
xp = rndf(2565 - rp * cos(angle));

yp = rndf(239 + rp * sin(angle));

x1 = rndf(xp - ra * cos(angle - phi)};

y1 = rmdf(yp + ra * sin(angle - phi));

x2 = rndf(xp - ra * cos{angle + phi));

y2 = rndf(yp + ra * sin(angle + phi});

if((!scrni _flag) &% (!scrn2_flag)) /* mult. screens */
{

XSatForeground(display,gci,color);
XDrawLine(display,XtWindow(winwidgeti),
gel,xe,ye,xp,yp);
XDrawLine(display,XtWindow(winwidget1),
gel,x1,y1,xp,yp);
XDrawLine(display,XtWindow(winwidget1),
gel,x2,y2,xp,yp); .
XDrawline(display,XtWindow(winwidget1),
gel,x1,y1,x2,y2);

}

if(scrni_flag) /* single screen on top view */

{

XSetForeground(display,gcl,color);
XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),
gcl,2*xe,2*ye,24xp,2*yp);
XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),
gc1,2#%x1,2+y1,2+xp,2*yp);
XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),
gcl,2%x2,2%y2,2%xp,2*yp);)
XDrawLine(XtDisplay(w{nwidget4),XtWindow(winwidget4),
gcl,2+*x1,2+y1,2%x2,2+y2);

}

}

/**#i*#************#************#t**#**************#***************#***‘#****#/
single_screen(image)

XImage *image;

{

XtPopdown(shelll);

XtPopdown(shell2);

XtPopdown(shell3);

XtPopup(shell4,XtGrabNone);
XClearWindow(XtDisplay(winwidget4),XtWindow(winwidget4));
XPutImage(XtDisplay(winwidget4),XtWindow(winwidget4),gcl,image,0,0,0,0,
2+x8ize,2*ysize);

XFlush(display);

}

/*****i***#***********#**ﬁ*******************#****************#*itt*#t##**##**/

cos(angle));
sin(angle));

* X ®* »

vold multi_screen()

{

XtPopdown(shell4d);
XtPopup(shelll,itGrabNone);

112

W 1 ‘
il | E & u 0 1
o T ‘ -

. N

t o

[S

(1

XtPopup(shell2,XtGrabNone);
XtPopup(shell3,XtGrabNone);

XFlush(display);

}

/A ok ok ko ok ok ok R ko ok ko kR Rk sk ks ok ok ok ok ok ok ok ok /
/* FUNCTIONS FOR RUBBER BAND LINES , ETC. */

[tk ok ok Kok ook bk kR ok Rk kR kR R R kbR Rk ok kR bk ok kR ok Rk Rk
create_rubber_gc(w, data)
Widget w;
rubber_band_data *data;
{
XGCValues values;
Arg argl(2];
XtSetArg(arg[0], XtNbackground, &values.foreground);
XtSetArg(arg{1], XtNforeground, &values.background);
XtGetValues(w, arg,2};
/%
* get the FG to the XOR of the FG and BG . This creates inverse
* video.
*/
values.foreground = 250;
valuee.line_style = LineOn0OffDash;
values.function = GXxor;
data->gc = XtGetGC(w, GCForeground | GCBackground |
GCFunction | GCLineStyle, &values);
}
/**#*#**##*******#************#****#*#*****it**i#**t*##*#****#**1**#**#*******/
void start_rubber_band(w, data, event) '
Widget w;
rubber_band_data *data;
XEvent *event;
{
data->last_x = data->start_x = event->xbutton.x;
data->last_y = data->start_y = event->xbutton.y;
XDrawlLine(XtDisplay(w), XtWindow(w),
data->gc, data->start_x,
data->start_y,data->last_x,data->last_y);
}
SRk kkoh ok kR ok Rk Rk kok ok Ak Rk kR Aok ok ok Rk kR kb kR Rk k ok ke /
void track_rubber_band(w, data, event)
Widget w;
rubber_band_data *data;
XEvent *event;
{
XDrawline(XtDisplay(w), XtWindow(w), data->gc,
data->start_x, data->start_y,
data->last_x, data->last_y);
data->last_x = event->xbutton.x;
data->last_y = event->xbutton.y;
XDrawline(XtDisplay(w), XtWindow(w), data->gc,
data->start_x, data->start_y,

113

data->last_x, data->last_y);
}

/**t**tttttt*ttttt*ttt***t**************tt**t***t**t*t*t#*#*ttt*t%*t**tt*tt**t/

void end_rubber_band(w, data, event)

Widget w;

rubber_band_data *data;

XEvent *event;

{

Arg argl1];

int delta_x, delta_y;

double sum;

XDrawlLine(XtDisplay(w), XtWindow(w), data->gc,
data->start_x, data->start.y,
data->last_x, data->last_y);

data->last_x = event->xbutton.x;

data->last_y = event->xbutton.y;

XFlush(XtDisplay(winwidget4));

delta_x = data->last_x - data->start _x;

delta_y = data->last_y - data->start.y;

sum = square((double)delta_x) + square((double)delta_y);

/* now resensitize the buttons in the widget, except the 'done
* button , unless really done !
x/

XtSetArg(arg[0], XtNsensitive, True) ;

if(scrni_flag)

{
if(horizontal_flag)
{
x_dim = rndf(sqrt(sum));
}
else
{
yi_dim = rndf(sqrt(sum));
}
XtSetValues(w_recl.widgetl,arg,1);
XtSetValues(w_recl.widget2,arg,1);
XtSetValues(w_recl.widget3,arg,1);
XtSetValues(w_recli.widget4,arg,1);
XtSetValues(w_reci.widget5,arg,1);
}
else
{
if (horizontal_flag)
{
y2_dim = rndf(sqrt(sum));
}
else
{
z_dim = radf(sqrt(sum));
} S o

ItSetValues(w_rec2.widgeti.arg,l);

114

il

r

"o
i

m
i

rumv t
s i

(!

1
I

A

LI

r
L

XtSetValues(w_rec2.widget2,arg,1);
XtSetValues(w_rec2.widget3,arg,1);
XtSetValues(w_rec2.widget4,arg,1);
XtSetValues(w_rec2.widgetb,arg,1);

}
}
/t****#*tt*i***********#***#**#***#*****#*illl**!lr*!Inlk**#**##***t#*****#i*#ttttt**/
/*
* functions to draw cross hairs for aligning the
* radar image with the video image.
*
*
* start full screen cursor from button callback
*/
void init_cursor(w,data)
Widget w;
cursor_data *data;
{

char xmessage[40], ymessage[40];
data->last_x = 5ii;
data->last_y = 479;

/% force cursor to center of image */
XHaerointer(XtDisplay(winwidget4),None,thindow(winwidget4),
0,0,0,0,data->last_x,data->last_y);

/* draw initial cursor */

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),rb_data.gc,0,

data->last_y,1023,data->last_y);

XDrawLine(XtDisplay(winwidget4),XtHindow(winwidget4),rb_data.gc,

data->last_x,0,data->last_x,959);

sprintf(ymessage,"Y OFFSET = %+5d ",(data->last_x - 511));
sprintf(xmessage,"X OFFSET = %+5d ",(479 - data->last_y));
UriteHessage(xmessage,Xtﬂindow(winwidget4),500,1020,white);
HriteHessage(ymessage,XtUindow(winwidget4),800,1020,white);
}

/*

* track cursor within the window

*/ :
void track_cursor(w,data,event)
Widget w;

cursor_data *data;
XEvent *event;
{

int i,x,y;

cher xmessage[40], ymessage[40];

/* erase previous lines */
XDrawline(XtDisplay(w),XtWindow(w),rb_data.gc,0,
data->last_y,1023,data->last_y);

XDrawlLine(XtDisplay(w) ,XtWindow(w),rb_data.gc,
data->last_x,0,data->last_x,959);
data->last_x = event->xmotion.x;
data->last_y = event->xmotion.y;

115

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,0,
data->last_y,1023,data->last_y);
XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,
data->last_x,0,data->last_x,959);

sprintf(ymessage,"Y OFFSET = %+5d ",(data->last_x - 511));
sprintf(xmessage,”"X OFFSET =)+5d ",(479 - data->last_y));
WriteMessage(xmessage,XtWindow(winwidget4),500,1020,%hite);
WriteMessage(ymessage,XtWindow(winwidget4),800,1020,white);
}
/*

* process button event at the end of cursor motion, and set shifts
*/
void end_cursor(w,data,event)
Widget w;
cursor_data *data;
XEvent *event;
{
Time time;
char xmessage[40], ymessage[40];
XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,0,
data->last_y,1023,data->last_y);
XDrawline(XtDisplay(w),XtWindow(w),rb_data.gc,
data->last_x,0,data->last_x,959);
data->last_x = event->xmotion.x;
data->last_y = event->xmotion.y;
/*

* remove event handlers and ungrb pointer

*/
XtRemoveEventHandler(winwidget4,PointerMotionMask,
False, track_cursor,&cur_data); ’
XtRemoveEventHandler(winwidget4,ButtonPreséHask,
False,end_cursor,&cur_data);
XUngrabPointer(XtDisplay(winwidget4),time);

/*

* clear message area

*/

XClearArea(XtDisplay(winwidget4) ,XtWindow(winwidget4),
0,960,0,83,False);

/*

* gset offset values

*/

if(scrni_flag)

{

x_offset = rndf{(data->last_x - 511)/2.);
yi_offset = rndf((data->last_y - 478)/2.);
SubRadarImage(im3);
XPutImage(display,XtWindow(winwidget4),gcl1,im3,0,0,0,0,
2*xpize,2+ysize);

AddRadarImage(im3);

}

if(scrn2_flag)

116

1 | i |] g

I
\\

.

\‘:
L[N |
R 1

e ot

; {
= y2_offset = rndf((data->last_x - 511)/2.);
z_offset = rndf((data->last_y - 4798)/2.);
SubRadarImage(im4);
XPutImage(display,XtWindow(winwidget4),gct,im4,0,0,0,0,
— 2#xs8ize,2*ysize);
AddRedarImage(im4);
}
}
L e e S LI AL e R S e L L i L
void init_line(w,data)
o Widget w;
=~ line_data *data;
{
char message(40];
data->x1 = 511;
data->x2 511;
data->y1 03
data->y2 = 960;
XWarpPointer (XtDisplay(winwidget4),None,XtWindow(winwidget4),
0,0,0,0,511,240);
/*
- * draw initial line
*/
XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),rb_data.gc,
data->x1,data->yl,data->x2,data->y2);
/*
* inivial message
*/
— sprintf (message,”ANGLE = %+4d ",0);
WriteMessage(message,XtWindow(winwidget4),500,1020,vhite);
}
void track_line(w,data,event)
Widget w;
line_data =*data;
XEvent *event;
{
char message[40];
double deltax, deltay;
double angle;
/*
= * erase previous line
1= */
XDrawlLine(XtDisplay(w),XtWindow(w),rb_data.gc,
data->x1,data->y1,data->x2,data->y2);
- deltax = (double)(event->xmotion.x - 511);
P deltay = (double)(479 - event->xmotion.y);
angle = atan2(-deltax,deltay);
data->x1 = rndf(511 * (1. - sin(angle)));
data->x2 = rndf(511 * (1. + sin(angle)));
data->y1 = rndf(479 * (1. - cos(angle)));

(-

[

o
2

1

117

i

data->y2 = rndf(479 * (1. + cos(angle)));

/*

* drav new line

*/
XDrawLine(XtDisplay(w),XtHindow(w),rb_data.gc,
data->x1,data->y1,data->x2,data->y2);
sprintf(message,"ANGLE = %+5d ",rndf(-angle*180./PI));
WriteMessage(message,XtWindow(winwidget4),500,1020,white);
}

void end_line(w,data,event)

Widget w;

line_data =*data;

XEvent *event;

{

double deltax, deltay;
double angle;

Time time;

/*

* erase previous line

*/
XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,
data->x1,data->yi,data->x2,data->y2);
deltax = (double) (event->xmotion.x - 511);
deltay = (double) (479 - event->xmotion.y);
angle = atan2(-deltax,deltay);
/*

* remove event handlers and ungrab pointer

*/
XtRemoveEventHandler(winwidget4,PointerMotionMask,
False, track_line,&l_data);
XtRemoveEventHandler(winwidget4,ButtonPressHask,
False,end_line,&1_data);
XUngrabPointer(XtDisplay(winwidget4),time);
/*

* clear message area

*/
XClearArea(XtDisplay(winwidget4),XtWindow(winwidget4),
0,860,0,63,False);
/*

* set rotation angles and redraw images

x/
if(scrni_flag)
{
Xxy_angle = angle;
SubRadarImage(im3);
XPutImage(display,XtWindow(winwidget4),ge1,im3,0,0,0,0,
2*x8ize,2*ysize);
AddRadarImage(im3);
}
if(scrn2_flag)
{

118

air i L { |

Ui

'l

et

L
i

pon
|
i

yz_angle = angle;

SubRadarImage(im4);
XPutImage(display,XtWindow(winwidget4),gcl,im4,0,0,0,0,
2%xgize,2*ysize);

) AddRadarImage(im4);

e }

}

§

(i

B.2.4 Module xframe.c

/*
T * This is a file of routines for talking to the FG100 video board
D= «/
#include "radar.h" /+* includes all X includes */

T #include '"frame.h"
R /*

* Externals

*/

extern void clear_array();
extern char *vidrayi, *vidray2;
extern int scrnl_flag, scrn2_flag;
- extern int xsize,ysize;
: extern Widget winwidgeti,winwidget2,winwidget4,top2;
extern XImage *imi,*im2,*im3,*im4;

extern Display *display;

extern Colormap cmap;

extern GC gcl;

extern XFontStruct *font,*font2;
extern int fore,back;

extern Boolean vidi_flag,vid2_flag;

n
!

(l

/*
* globals defined in this module
x/)
unsigned short *reg_addr; /* word pointer to reg[0] */
i v unsigned short *mem_addr; /* byte pointer to mem[0] */
2 e int shmid_reg, shmid_mem; /* shared memory id’s */
= T e L e LRt E LT L
. /+
* function to initialize shared memory and ITI board
*/
- ITI_init()
% %% int size, shmflag;
: unsigned int p_addr, p_base, reg_p_space, mem_p_space;
. unsigned short *v_base;
= ‘unsigned char *mem_base;
=

unsigned short temp;

char *shmaddr;

extern int errmo;

extern char *sys_errlist[];
key_t key;

119

int i;
char *shmat();
unsigned short read_register();
8ignal(SIGBUS,SIG_IGN);
/* set up shared address space for control registers */
if ((shmid_reg = shmget (REG_KEY,
REG_REGION_SIZE,)
SHMFLAG,
REG_PHYS_ADDR,
REG_PHYS_SPACE)) < 0)

{

fprintf(stderr,

"Error allocating shared memory for comtrol registers\n");

fprintf(stderr,"shmget: errno: %d,%s\n",
errno,sys_errlist[errnol);
exit(1);
}
if ((v_base =
(unsigned short *)shmat(shmid_reg, O, 0)) < 0)
{
fprintf(stderr,

"Error allocating memory for control registers\n');

fprintf(stderr, '"shmat: %s\n", dys_errlist(errho]);
exit(1);
}
reg_addr = v_base + (0x1000/sizeof(temp));
/* now set up shared memory for video memory */
if ((shmid_mem = shmget (MEM_KEY,
MEM_REGION_SIZE,
SHEMFLAG,
MEM_PHYS_ADDR,
MEM_PHYS_SPACE)) < 0)
{
fprintf(stderr,

"Error allocating shared memory for video memory\n");
fprintf(stderr,”shmget: %d -- %s\n",
errno,sys_errlist{errnol);
exit(1);

}
it ((mem_addr = S o
(unsigned short *)shmat(shmid_mem, 0, 0)) < 0)

{

fprintf(stderr,

“Error allocating memory for video memory\n');

fprintf(stderr, "shmat: %d -- %s\n",

errno,sys_errlist[errncl);

exit(1);

X
/*
* Actually do something with device here
*/

120

0l (1

[

"

lp n

/* do a soft reset and set up default controls */
write_register(LUT_CONTROL.Oxttft); /* reset board */
write_register (LUT_CONTROL,0x3000); /+ select board */
write_register(Z0OOM,0); /* zoom & regmux = 0 */
vrite_register(HEHORY_CONTROL.014040); /* Z-mode & pixel buf#/
write_register (PROCESSOR_MASK,0); /* no protection */
write_register(VIDEO_MASK,0); /* no protection */
write_register (PIXEL_BUFFER,0); /# clear pix buffer reg. */
write_register(X_POINTER,0); /+ set x-pointer */
write_register(Y_POINTER,0); /* set y-pointer */
write_register (POINTER_CONTROL,0); /* no pointers x/
write_registar(CPU_ADR_CDNTROL,0x0407); /* enable fb add’s. */
write_register (X_SPIN,0x10); /# try this, or 10h */
write_register(Y_SPIN,0); /* no y-spin */
write_register (PAN,0); /#* no pan */
write_register(SCROLL,O); /* no scroll */
write_register(STATUS_CONTROL,Ox3040);
ITI_lut(); /#% set up LUT’s */
} i
/*
* Function to initialize the LUT’s
*/
ITI_lut()
{
unsigned short i;
write_register (LUT_CONTROL,0x2000); /* select LUT memory */
for(i=0;1<256;i++)
{
mem_addr (RED_BASE/2 + i] = i;
mem_addr [BLUE_BASE/2 + i] = i;
mem_addr [GREEN_BASE/2 + i] = i;
}
for(i=0;1i<258;i++)
{
mem_addr [ILUT_BASE/2 + i] = i;
}
write_register(LUT_CUNTROL.0x3000); /* select video mem. */
}
/%
+ Function to do a single frame grab and display it in the correct
+ window. NOTE : This function deletes any current rader image.
*/
ITI_frame(cam)
unsigned char cam;
{
/* do an acquisition */
unsigned short data;
int size,i;
size = B12#480;
wait_vb();
data = (unsigned short)read_register(STATUS_CONTROL);

121

if('cam) data = data & 0x0040;
if(cam) data = data & 0x0048;
write_register (STATUS_CONTROL,data);
while(data=((unsigned short)read_register(STATUS_CONTROL)&0x3000));
if('cam) data = data | 0x2040;
if(cam) data = data | 0x2048;
write_register(STATUS_CONTROL,data); :
while(data=((unsigned short)read reglster(STATUS CONTROL)&OxSOOO)),
sleep(1); .
if(!'scrni_flag k& !scrn2_flag) /* in multiscreen mode */
{
if(!cam) /* overhead camera #*/
{
for(i=0;i<size;i++)
vidrayi[i] = (unsigned char) ((mem_addr[i] & 0x00ff)/2);
vidi_flag = True;
/* this w111 take some tlme so tell’em x/
UriteHessage("Please wait, this will take awhile...",
XtWindow(winwidget1),5,505,back);
CreateImage(vidrayi,imi,xsize,ysize);
Createlmage(vidray1,im3,2*xsize,2*ysize);
XPutImage{XtDisplay(winwidget1),XtWindow(winwidgetl),
ge1,im1,0,0,0,0,xsize,ysize);
/* erase message by writing same one in black */
WriteMessage("Please wait, this will take avhile...",
XtWindow(winwidget1),5,505,fore);
} P
else
{
for(i=0;i<size;i++)
vidray2[i] = (unsigned char)((mem addr[i] & OxOOff)/Z)
vid2_flag = True;
WriteMessage("Please wait, this will take awhile...”,
XtWindow(winwidget2),5,505,back)
CreateImage(vidray2,im2,xsize,ysize);
Createlmage(vidray2,im4,2*xsize,2*xysize)};
XPutImage(XtDlsplay(wlnw1dget2) XtHlndow(winwidget2)
get,im2,0,0,0,0,xs8ize,ysize);
WriteMessage(''Please wait, this will take awhile..."
XtUindow(winwidget?) 5,505,fore);

} T T
}
if(scrni_flag)
P _

WriteMessage("Please wait, this will take awhile...",
XtWindow(winwidget4),300,1020,back);
if(tcam)
{ .
for(i=0;i<size;i++)
vidrayi[i] = (unsigned char) ((mem_addr[i] & Ox00ff)/2);
vidi_flag = True;

122

i
|

Wil |

wi

i |

i

&l

-

CreateImage(vidrayl,imi,xsize,ysize);

CreateImage(vidrayl,im3,2+xsize,2*ysize);

XPutImage(XtDisplay(winwidget4),XtHindow(winwidget4),
gci,im3,0,0,0,0.2*xsize,2*ysize);

}
-— else
{
for(i=0;i<size;i++) N
vidray2{i] = (unsigned char) ((mem_addr[i] & 0x00ft)/2);
- vid2_flag = True;
/* create the images but don’t display it */
) CreateImage(vidrayz,im2,xsize,ysize);
— CreateImage(vidray2,im4,2*xsize,2*ysize);
}
WriteMessage("Please wait, this will take awhile...",
- XtWindow(winwidget4),300,1020,fore);
}
. if(scrn2_flag)
- {
B WriteMessage("Please wait, this will take avhile...",
XtWindow(winwidget4),300,1020,back);
e if('cam)
— {
for(i=0;i<size;i++)
- vidray1[i] = (unsigned char)((mem_addr[i] & 0x00ff)/2);
vidi_flag = True;
- /* create the images but don’t display */
) CreateImage(vidrayi,imi,xsize,ysize);
i CreateImage(vidrayi,im3,2*xsize,2*ysize);
P E }
else
{

for(i=0;i<size;i++)

vidray2[i] = (unsigned char)((mem_addr[i] & 0x00££)/2);

- - vid2_flag = True;

- — CreateImage(vidray2,im2,xsize,ysize);

= CreateImage(vidray2,im4,2+xsize,2+ysize);

XPutImage(XtDisplay(winvidget4),XtHindow(winwidget4),

gci,im4,0,0,0,0,2*xsize,2*ysize);

- — } .

WriteMessage("Please wait, this will take awhile...",

XtUindow(winwidget4),300,1020,fore);

I !

= }
}
/*
P * function to put in continuous acquisition mode
- */
ITI_cont()
{

unsigned short data;
while(data=((unsigned short)read_register(STATUS_CONTROL)&0x3000));

123

data = read_register(STATUS_CONTROL);
data = data | 0x3040;

write_register (STATUS_CONTROL,data);
}

/*x

* function to switch cameras

*/

ITI_camera(cam)
unsigned char cam;
{
unsigned short data;
data = read_register(STATUS_CONTROL);
data = data & OxOfff;
write_register(STATUS_CONTROL,data);
while(data=((unsigned short)read_register(STATUS_CONTROL)&0x3000));
if(cam)
{
data = read_register(STATUS_CONTROL);
data = data & Oxff40;
data = data | 0x0008;
write_register (STATUS_CONTROL,data);
}
else
{
data = read_register(STATUS_CONTROL);
data data & Oxff40;
write_register (STATUS_CONTROL,data);

}
}
/*
* Function to release shared memory mapping for ITI board
*/
ITI close()
{
/*
* Now that we’re done playing with the device, free the region.
x/ '
shmdt (0);
shmdt (0);
}
/%
* Write a FG100 control register
*/
write_register(r,data)
unsigned short r,data;

{

reg_addr([r/2] = data;

3

/*

* Read a FG100 control register
*/

124

] |

|

-

e

unsigned short read_register(r)
unsigned short r;
- {
unsigned short data;
data = (unsigned short)reg_addr[r/2];
— return data;
}
/*
* Wait for a vertical blanking period
*/
wait_vb()
{
-~ /* wait out pending vertical blank */
while(!(read_register(STATUS_CONTROL)&010400));
/+ wait for next vertical blank */
while(read_register(STATUS,CONTROL)&OxO400);
/* wait it out */
while(!(read_register(STATUS_CONTROL)&OxO400));

}

N

B.2.5 Module xcom.c
R /%

XCOM.C :

[

This is a file of functions for handling data transfer between
IRADAR and TTT.

% ¥ B * X * *

*/
#include "radar.h" /+ includes all X includes */
P extern XImage *imi,*im2,+*im3,*im4;
extern Display *display;
extern Colormap cmap;
extern GC gcl,gc2;
extern Widget toplevel, top2,
shellil, shell2,
shell3, shell4,
winwidgeti, winwidget2,
winwidget3, winwidget4,
: buttonib,exit_message;
- extern int gxposi, gyposi,

gxpos2, gypos2,

gxpos3, gypos3,

gxpos4, gypos4,
i : xsize, ysize,

screen;

extern unsigned int red,white,blue,black;
- — extern int scrni_flag,scrn2_flag;

extern int num_pnts;

— 125

-
extern float in_angle;
extern float radar_data[IMAGE_PNTS][6];
AR L T T T ST P TPy ==
/x -
* Callback for radar imaging button
*
* NOTICE : This function has its own event processing loop for handling -
* events while performing continuous radar image display. Only two
* events are recognized by this handler :
* -
* 1) Property change events on the property being used to
* pass data from TTT to XRADAR.
* 2) A button press to exit the event handling loop and —
* exit this callback routins. -
*
* This function also mixes X1ib calls with Xt Intrinsics and
* Kaw widgets. Care is needed when attempting to modify this -
* function.
*/
void image_loop(w, call_data, client_data) -
Widget w;
caddr_t call_data, client_data;
{
Window root,window; -
XEvent event;
int i,x,y;
if(!'scrni_flag && !scrn2_flag) -
{
window = XtWindow(winwidget2);
x = b; _
y = 505; -
WriteMessage("To exit this function, click on RTDP button again.”,
window,x,y,white); _ .
} -
else
{
window = XtWindow(winwidget4); -
x = 400;
y = 1020;
WriteMessage("To exit this function, click on RTDP button again.",
window,x,y,white); -
}
root = DefanltRootWindow(XtDisplay(toplevel)); :
RDR_DATA = XInternAtom(XtDisplay(toplevel),'Data',0); -

RDR_DATA_TYPE = XInternAtom(XtDisplay(toplevel),'Data Type",0);
/*
* write message to tell user how to exit this function
*/
XSelectInput (XtDisplay(toplevel),root,
PropertyChangeMask) ;
while(TRUE) /* loop until user exits via button press */

126

{ v rm

e

(v

—

{
XtNextEvent(&event); /* get next event */
switch(event.type) /* check event type */
{ ;
case PropertyNotify :
if(event.xproperty.window == root &%

event .xproperty.atom == RDR_DATA)
{

printf("Got the data !\n"); ,

display_data(); /* display new image */
}
else

XtDispatchEvent (Revent);
break;
case ButtonPress :
if(event.xbutton.window == XtWindow(buttonib))
{ A

XDeleteProperty(XtDisplay(toplevel),

root, RDR_DATA);

XDeleteProperty(XtDisplay(toplevel),
root ,RDR_DATA_TYPE);

/* erase message */

WriteMessage("To exit this function, click\

on RTDP button again.", window,

x,y,black);
return;
}
default : XtDispatchEvent(&event);
3
}
}
display_data()
{

int i,j, type, format, nitems, left;
char *retdata;

float *fretdata;
XGetWindowProperty(XtDisplay(toplevel),
DefaultRootWindow(XtDisplay(toplevel)),
RDR_DATA,0,4096 ,FALSE,

RDR_DATA_TYPE, &type, &format,

gnitems, &left, kretdata);

if(type == RDR_DATA_TYPE)

{
fretdata = retdata;
num_pnts = (int)(*fretdata);

in_angle = *(fretdata+l);
for(i=0;i<num_pnts;i++)
for(j=0;j<6;j++)
{
radar_data[i][j] = *(fretdata+6*(i+1)+j);
}

127

if(tscrni_flag &k !'scrn2_flag)
{
SubRadarImage(imi); /#* clear screens */
SubRadarImage(im2);
XPutImage(display,XtWindow(winwidget1),get,im1,0,0,0,0,
xsize,ysize); /* put video image back */
AddRadarImage(im1); /* add new radar image */
XPutImage(display,XtWindow(winwidget2),gct,im2,0,0,0,0,
xsize,ysize);

AddRadarImage(im2);
}
it(scrni_flag)
{

SubRadarImage(im3);
XPutImage(display,XtWindow(winwidget4),gci,im3,0,0,0,0,
2*xsize,2%ysize);

AddRadarImage(im3);
}
if(scrn2_flag)
{

SubRadarImage(im4);

XPutImage(display,XtWindow(winwidget4),gct,im4,0,0,0,0,
2*xBize,2*ysize);
AddRadarImage(im4);

}
}
}

B.2.6 Module xutil.c
/*

* util.c -- This file contains support routines for the xrdr.c

* main program.
*/
#include "radar.h" /+* includes all X includes */
extern XImage *imi, *im2, *im3, *im4;
extern Dispiay *display;
extern Colormap cmap;
extern GC gcl;
extern XFontStruct *font,*font2;
extern unsigned long cols[];
extern unsigned int fore, back;
extern Widget toplevel, top2,
shelll, shell2,
shell3, shelld,
vinwidgeti,winwidget2,
winwidget3,winwidgets,
popfilet, popfile?.
error_popup, msg_popup;
extern float x_scale, yi_scale, y2_scale, z_scale;
extern int x_offset, yl_offset, y2_offset, z_offset;

128

i

1l |

i

Il

i

ISR F T

P

E

i

L

'

-

T

Lt 11w

Hdd I
\ﬂu ny

extern int horizontal_flag,scrni_flag,scrn2_flag;
extern int xsize,ysize;
extern float radar_data[IMAGE_PNTS][6];
extern int num_pnts; /* number of points in current radar image */
extern float in_angle;
extern char *vidrayi, *vidray2, *Imagel, *Image2;
extern char *BigImagel, *Biglmage2;
void Null_func();
double square();
static XtActionsRec actionsTable [] = {
{"Null_func',Null_func}, };
static char defaultTranslations[] = "Ctrl<Key>J: Null_func() \n\
Ctrl<Key>0: Null_func() \n\
Ctrl<Key>M: Null_func() \n\
<Key>Return: Null_func()";
Widget error_button; /* global widgets in this module */
FILE *video_fp, *radar_fp;
/*t#t*t**#t*t***t*i##**#**1*******##t*****tt*#*t*****t**#*********##*#t*i**#t*/
/*
* a null function which does nothing but which is needed for intercepting
* <RET> typed in text widgets, ie) do nothing if a <RET> is typed.
*/
void Null_func()
{
}
/**#*itt*t#***#*****tt*****#****t*#************#**#****t##*****t*#*i***t*#*#*t/
/*
* a math round function
*/
int rndf(number)
double number;
{
double trash;
if (modf (number ,ktrash) > 0.5) return ceil(number);
else return floor(number);
}

/***#t******#*******#****#**#**#****#****#*****#****##****************##**#***/

double square(x)

"double x;

{

double result;
result = x*x;
return result;

}

/#*****#*i*t***#***#**#*ﬂ*******#****##**#******#*****##****#**t**tt#*t*#**i**/
void rotate_point(x,y,angle)

float *x,*y;

float angle;

{
double tx,ty;
double r,theta;

129

tx = *x;

Ly = *yi

/*
* convert to polar
*/

r = sqrt(tx*tx + ty*ty);
if((tx == 0.0)&&(ty==0.0))
theta = 0.0;

else
theta = atan2(ty,tx);
/*
* rotate point
*/

*x = (float)(r * cos(theta + angle));
*y = (float)(r * sin(theta + angle));
}
e L L e P P P PP P ey
clear_array(array,size)
char *array;
int size;
{
int i;
for(i=0;i<size;i++) *(array + i) = 0;
}
A L L Ly T T e Tt adt 1Y
/*
* callback proc to popdown the popup windows

*/
void pop_down(w, client_data, call_data)
Widget w;
" caddr_t client_data, call_data;
{
XtPopdown((Widget)client _data);
} .

P L N T T I ettty
/*
* a function to activate a popup error window and display the
* appropriate error message.
*/
vold Error_window(err_code,err_no,str)
int err_code,err_no;
char *str;
{
‘static char error_string[100];
static Arg arg[] = { {XtNlabel, (XtArgVal)error_string} };
char temp[100];
switch(err_code)
{
case 1 : /* file i/o error */
sprintf(error_string, " X-Radar I/0 Error : ");
sprintf(temp,"File ‘%s‘ Not Found ... ",str);

130

i

Pewinon

strcat(error_string,temp);

break;

case 2 : /* scale factors not set yet */

sprintf(error_string," X-RADAR Protocol Error : ");

o sprintf(temp,"nadar image scale factors not set ... "),

— strcat(error_string,temp);

break;

case 3 : /* trying to set scale factor in wrong mode */
sprintf(error_string," X-RADAR Protocol Error : ");
strcat(error_string,"Must be in single screen ");
strcat(error_string,"mode to set scale factors.");

- break;

L case 4 : /* trying to set offsets in wrong mode */
sprintf(error_string," X-RADAR Protocol Error : ");
strcat(error_string,"Must be in single screen ");

- strcat(error_string,"mode to set offsets.”);

break;

case 5 : /* trying to do shift,etc. to ISAR image */
sprintf(error_string," X-RADAR Protocol Error : ");
strcat(error_string,"Function not available for ");
strcat(error_string,"ISAR images.");

break;
case 68 : /* trying to rotate in wrong mode */
sprintf(error_string,”" X~RADAR Protocol Error : ");
strcat(error_string,"Must be in single screen ");
strcat(error_string," mode to rotate image.“);
break;

case 7 : /* bad filename : unable to open file */

sprintf (error_string,"X-RADAR I/0 Error : ");

T — strcat(error_string,"Bad file name , unable ");
strcat(error_string,"to create or open file.");

- break;

- }

XtSetValues(error_button,arg,XtNumber(arg));
XBell(XtDisplay(toplevel), 100);

Lo XtPopup(error_popup,XtGrabNone);

o }

P L P s Ty

F /*

3 # write_video_file() -- writes a video image to disk in binary format

, ./

write_video_file(fname,array)

char fname[];

char #array;

|

(e

- {
: /* open file for writing */
if((video_fp = fopen(fname,"wb")) == NULL)
{
i Error_window(7,0,fname);
- return(0);
}
. — 131

/* write video file to disk */

fwrite(array,sizeof(*array), (612%512),video_£p);

fclose(video_Ip);

} /% end write_video_file() %/

A L T R T ey

/% ~ Lo e e

* read_video_file() -- reads video image file into named array memory,
* initializes globals: mapchars, and video_fp (file descriptor)
*/

read_video_file(fname,array)

char fnamel[];

char *array;

{

al

long i,j;
/* open video image file #*/
if((video_fp = fopen(fname, "rb")) == NULL)
{ S
Error_window(1,0,fname);
return(0);

} T
/* read video file into video array */

fread(array, sizeof(*array),(512%512),videc_Ip);

fclose(video_fp);

return(1);
} /%end read_video_file()s/
P T L T T T T Ty

/*

I

L1

* read_sif_file() -- reads sif image file into named array memory,

* initializes globals: mapchars, and video_fp (file descriptor).

* Included to provide upward compatibility for SIF files (video image =
* files from MetraByte MV-1 software). This function is not currently used. L

*/
read_sif_file(fname,array)
char fname[];
char #*array;

{

long i,J;
char t1[256+240];
char t2[256%240];
char t3[256*240];
char t4[256+240]; :
/% open video image file %/
if((video_fp = fopen(fname, "rb")) == NULL)
{

Error_window(1,0,fname);

return(0); .
} X L o . , =
/* read video file into video array */ : &
fread(t1,sizeof(char),(256+240),videc_Ip);
fread(t2,sizeocf(char),(266+240),video_fp);
fread(t3,sizeof(char), (256+240),video_fp);

|l

132

T,

rmwmr-

ik b 11

e

i
e

[

£

W "

(e

m

L

("

!

fread(t4,sizeof(char),(256+240),video_£fp);
for(j=0; j<240+512; j+=512)
{
for(i=0;i<266;i++) array[i+j] = ti1l[i + j/2];
for(i=0;i<256;i++) array[i+256+j] = t2[i + j/2];
}
for(j=0;j<240%512;j+=512)
{
for(i=0;i<266;i++) array[i+j + 240+512] = t3[i + j/2];
for(i=0;i<256;i++) array[i+256+j + 240+512] = t4[i + j/2];
}
fclose(video_fp);
return(i);
} /*end read_file()*/
J Aok ook koo o koo ook o oo ook ok ok ok sk ko ok ek ok ok ok ok sk ok ok ok sk ok ko ek

/* a function to read in x,y,z,mag format radar data files.
%*

*/
read_radar_file(fname)
char fname([];
{
flocat x,y,z,mag;
int i;
FILE #*radar_£fp;
if((radar_fp = fopen(fname,'r")) == NULL)
{
Error_window(1,0,fname);
return(0);
}
fscanf(radar_fp,"/d %f\n",&num_pnts,&in_angle);
for(i=0;i<num_pnts;i++)

{
fscant (radar_fp,"%f %f 4f Yd\n",&x,&y,&z,kmag);
radar_datali] [0] = x;
radar_data[i][1] = y;
radar_datal[i] [2] = z;
radar_data[i] [3] = mag;
}

fclose(radar_fp);
return(1); /* successful read of data file */

}

F L L Ty Y/
/* a function to create a 'composite” widget which is like a dialog Widget, */
/* but which is easier to control. *
Widget CreateTextWidget(parent,label_str,cb_func,buffer,

X_pos,y_pos)

Widget parent; /* parent of composite widget */
char *label_str; /* prompt string to display */
void (*cb_func)(); /* pointer to callback function */
char »buffer; /* pointer to buffer to hold string x/
int x_pos, y_pos; /* x,y position of popup */

133

{
Widget popup, button, box, label, w;
Arg args[10];
int x_size, y_size;
char geom_str[20];
XtCallbackRec callback[2];
XtTranslations trans_table;
/*
* register new actions and compile the new translation table
*/
XtAddActions(actlonsTable XtNumber(actlonsTable)),
trans_table =
XtParseTranslationTable(defaultTranslations); S
/* L o B
* create a popup shell for the text widget
*/
/* first set up geometry string */
x_size = 450;
y_size = 100;
sprintf(geom_str,"%1ix%1i",x_size,y_size);
XtSetArg(args[0], XtNx, x_pos);
XtSetArg(args[1], XtNy, y_pos); . o
XtSetArg(args[2], XtNgeometry,geom_ str);
XtSetArg(args[3], XtNallowShellResize,False);
popup = XtCreatePopupShell('popup",transientShellWidgetClass,
parent ,args,4); =

LIINT O A) ;i

XtSetArg(args[0], XtNheight, y_size); <
XtSetArg(args[1], XtNwidth, x_size);

XtSetArg(args[2], XtNforeground,fore); —
XtSetArg(args[3], XtNbackground,back); %%;

box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,4);
XtSetArg(args[0], XtNlabel, label _str);
XtSetArg(args[1], XtNforeground,fore); -
XtSetArg(args[2], XtNbackground,back);
label = XtCreateManagedWidget("label",labelWidgetClass,box,args,3);
/*

* create an ascii string widget.

*/

XtSetArg(args[0], XtNeditType, (XtArgVal)XttextEdlt),
XtSetArg(args[1], XtNstring, buffer);
XtSetArg(args[2], XtNwidth, (x_size-10));
XtSetArg(args[3], XtNlength, 40);
XtSetArg(args[4], XtNforeground,fore);

XtSetArg(args[5], XtNbackground,back); ,
= XtCreateManagedWidget("string",asciiStringWidgetClass,box,
args,68); =
/* N = I
* create a button to close the box LB
*/

XtSetArg(args[0], XtNlabel, " OK ");
XtSetArg(args[1], XtNforeground,fore);

[

134

all

XtSetArg(args(2], XtNbackground,back);
button = XtCreateManagedHidget("command",commandHidgetClass,

box, args,3);
C. /*
?§§ + add callbacks to pop down the box
[*/
XtAddCallback(button, Xtﬂcallback,cb_func,buffer);
XtAddCallback(button, XtNcallback,pop_down,popup);
— /*
+ Merge the defined translations with the existing
- * translations.
. x/
= XtOverrideTranslations(w,trans_table);
XtSetKeyboardFocus(box,w);
- XtRealizeWidget (popup);
- XSetUindowColormap(XtDisplay(popup),XtVindou(popup),
cmap) ;
return(popup) ;
s }
/ttt###*#t#******#tt#****i*****#t*t#*t*#*#t*#t*t*t*t*t**t#*#t#*tt**tiit##t****/
) /% callback for the ScaleWidget. When executed it sets the sensitivity
; é; + of all the widgets within the ScaleWidget to false. The sensitivity
2 — # of the widgets is reset after the rubber band process has been completed.
*/
R void ClickOff(w, w_struct, call_data)
= Widget w;
widget_struct #*w_struct;
caddr_t call_data;
, {
T Arg argl1];

XtSetArg(arg[O],Xthensitive,False);
XtSetValues(w_struct->widgetl, arg,1);
XtSetValues(w_struct->widget2, arg,1);
XtSetValues(w_struct->widget3, arg,1);

- ItSetValues(w_struct->widget4, arg,1);

12(w == w_struct->widget1) horizontal_flag = True;
else horizontal_flag = False;

4

i . }
o /t*##t***t#*#*#***##*#*t#****#t##t*t*i**##*******#*ttt#*#*t*tt*t*##*it##tttt*t/
T e /*+ creates a "composite" widget for entering scale factors, etc.

*

*/

Widget CreateScaleHidget(parent.1abe1,1abe1_str1,1abel_str2,cb_func,
bufferl,buffer2,w_struct.x_pos.y_poa)

Widget parent; /* parent of composite widget */
S char *label; /* label for whole box */
- char *label_strl,
label_str2; / prompt strings to display */
void (*cb_func)(); /* pointer to callback function */
o~ char *bufferi,
*buffer2; /+ pointers to buffers to hold strings */

- 135

widget_struct *w_struct; /* pointer to structure to hold widgets */

int x_poB, y_pos; /* x,y position of popup */
{
Widget popup, box, labell, label2Z, wi, w2, close_button;
Arg args[10];
int x_size, y_size;
char geom_str(20];
XtCallbackRec callback[2];
XtTranslations trans_table;
/*
* register new actions and compile the new translation table
*/
XtAddActions(actionsTable,XtNumber(actionsTable));
trans_table =
XtParseTranslationTable(defaultTranslations);
/*
* create a popup shell for the scale widget
*/
/* first set up geometry string */
x_size = 500;
y_size = 125;
sprintf(geom_str,"%1ix)1i",x_size,y_size);
XtSetArg(args[0], XtNx, x_pos);
XtSetArg(args[1], XtNy, y_pos); o
XtSetArg(args[2], XtNgeometry geom_str);
XtSetArg(args[3], XtNallowShellResize,False);
popup = XtCreatePopupShell("popup”,transientShellWidgetClass,
parent ,args,4);
XtSetArg(args[0], XtFheight, y_size);
XtSetArg(args[1], XtNwidth, x_size);
XtSetArg(args[2], XtNforeground,fore);
XtSetArg(args[3], XtNbackground,back);
box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,4);
XtSetArg(args[0], XtNlabel, label);
XtSetArg(args[1], Xtﬂforeground,fore);
XtSetArg(args[2], XtNbackground,back);
XtCreateHanagedwldget("label" 1abelH1dgetC1ass box,args,3);
XtSetArg(args[0], XtNlabel, label_stri);
XtSetArg(args[1], XtNforeground,fore);
XtSetArg(args[Z], XtNbackground,back) ;

labell = XtCreateHanagedHidget("1abe1",commandﬂidgetClass box,args 3);

/*

* create an ascii string widget.

*/ : ST)
XtSetArg(args[O], XtNeditType, (XtArgval)XttextEdit);
XtSetArg(args[1], XtNstring, bufferil);

XtSetArg(args[2], XtNwidth, 110);

XtSetArg(args[3], XtNlength, 10);

XtSetArg(args[4], XtNforeground,fore);

XtSetArg(args[6], XtNbackground,back);

w1 = XtCreateManagedWidget{''string”,asciiStringWidgetClass,box,

136

I (R L

= :
= i

i

L

args,8);
/*
s * create another label and ascii string widget.
*/
XtSetArg(args[0], XtNlabel, label_str2);
XtSetArg(args[1], XtNforeground,fore);
" XtSetArg{args[2], XtNbackground,back);
label2? = XtCreateManagedWidget("label",commandWidgetClass,box,args,3);
XtSetArg(args[0], XtNeditType, (XtArgVal)XttextEdit);
- — XtSetArg(args[1], XtNstring, buffer2);
XtSetArg(args{2], XtNwidth, 110);
XtSetArg(args[3], XtNlength, 10);
XtSetArg(args([4], XtNforeground,fore);
XtSetArg(args (6], XtNbackground,back);
w2 = XtCreateManagedWidget("string",asciiStringWidgetClass,box,
args,6); .
 — /*
* create a button to close the box
*/
XtSetArg(args[0], XtNlabel, " OK ");
XtSetArg(args[1], XtNforeground,fore);
XtSetArg(args[2], XtNbackground,back);
XtSetArg(args(3], XtNsensitive,False);
close_button = XtCreateManagedWidget('command”,commandWidgetClass,
box, args,4);

(o

/*
* add callbacks to pop down the box
*/
) XtAddCallback(close_button, XtNcallback,cb_func,NULL);
. XtAddCallback(close_button, XtNcallback,pop_down,popup);
/*
* £ill in the structure for client_data and add callbacks
* for the command labels.
f;‘ */
' w_struct->widgeti = labell;
- w_struct->widget2 = label2;
w_struct->widget3 = wi;

R
i
i

w_struct->widgetd = w2;
L w_struct->widgetb = close_button;
§E XtAddCallback(labell,XtNcallback,ClickOff,w_struct);
= XtAddCallback(label2,XtNcallback,ClickDff,w_struct);
/*
: * Merge the defined translations with the existing
7 * translations.
*/

XtOverrideTranslations(wl,trans_table);
3 B XtOverrideTranslations(w2,trans_table);
- XtRealizeWidget (popup);
XSetWindowColormap(XtDisplay(popup),XtWindow (popup),
cmap) ;
T return(popup) ;

137

}

R R L L T ey
/* a function to create a widget for error messages which must be acknowledged
* by the user. ie) click on the widget to close the error message window
*/

Widget CreateErrorWidget(parent)

Widget parent;

{

Widget popup, box;

Arg args[10]; -

XtSetArg(args[0], XtNx, 400);

XtSetArg(args[1i], XtNy, 800);

XtSetArg(args[2], XtNallowShellResize, Trus);

popup = XtCreatePopupShell('popup",transientShellWidgetClass,

parent ,args,3);

/* =
* create a box to go in the shell —5
*/
XtSetArg(args (0], Xt¥foreground, fore);
XtSetArg(args[1], XtNbackground, back);
XtSetArg(args[2], XtNtransient, True);
XtSetArg(args[3], XtNheight, 100);
XtSetArg(args[4], XtNwidth, 200); 7)
box = XtCreateHanagedVidget("box",boxHidgetClass,popup,argé,S);
/*
* create a button to go in the box;
* only thing the button does is display the error message
* and pop down the shell when selected.
* Error message set in function Error_window().
*/)
XtSetArg(args[0], XtNforeground, fore);
XtSetArg(args[1], XtNbackground, back);
error_button = XtCreateManagedWidget ("error",commandWidgetClass,
box,args,2);

/*

* add callback to popdown the shell _
*/ - o B
XtAddCallback(error_button, XtNcallback, pop_down,popup) ;
XtRealizeWidget (popup);
XSetWindowColormap(XtDisplay(popup), XtWindow(popup),

cmap); :
return(popup) ;
} , ,
/***t**#***#*#;*7*;***********#M#*’*A*.A*};;’*i;;!;***7*7*7**:**********#*‘#*##**#*#t*ii##i*/
/* ExposeEvent event handler for the graphics widgets */
void RePaint(w,client_data,event)
Widget w; :
caddr_t client_data;
XEvent *event;
{]
int dest_x,dest_y, -

138

rvw rre

width,height,

count;
dest_x = event->xexpose.X;
dest_y = event->xexpose.y;
width = event->xexpose.width;
- height = event->xexpose.height;

count = event->xexpose.count;

- if('count)
{
if(w == winwidget1)
{
XPutImage(XtDisplay(w) ,XtWindow(w),
— gcl,iml,dest_x,dest_y,
dest_x,dest_y,width,height);
AddRadarImage(imi);
}
it (w» == winwidget2)
{
XPutImage(XtDisplay(w),XtWindow(w),
gel,im2,dest _x,dest_y,
dest_x,dest_y,width,height);

]y

: AddRadarImage(im2);
3 }
it(w == winwidget4)
C e {
o if(scrni_flag)
- {

XPutImage (XtDisplay(w) ,XtWindow(w),
gel,im3,dest_x, dest_y,

- — dest_x,dest_y,width,height);
AddRadarImage(im3);
}
else if(scrn2_flag)
{
XPutImage(XtDisplay(w),XtWindow(w),
gel,im4,dest_x, dest_y,

Bt dest_x,dest_y,width,height);
AddRadarImage(im4);

}
- }
}
XFlush(XtDisplay(w));
}
= /#*##i#t*##****#**tt*****#t#*#*i*##*********i*#***t****tt*i##t*i**##*#**#***#*/
/*
* A function to write a message on the screen immediately (putting up
T — * a message widget requires too much time due to buffering)
*
D= 'lf/

= HriteHessage(message.window,x,y,color)
char *message;

= 139

-

Window window;

int x,y;

unsigned int color; =

{

XSetForeground(display, gcl, color); -

XSetFont(display,gci,font2->fid); -

XDrawImageString(display,window,gcl,x,y,message,strlen(message)); -

XSync(display,0);

}
-
-
%
g
-
i :
=
-
B
%
-

140

Appendix C
. X-RADAR Errors

o

i The recoverable errors which can be generated while using X-RADAR are listed

below by the error message displayed for each. While unrecoverable errors will

v

usually cause the program to crash, every attempt has been made to keep this

from happening.

e

C.1 X-RADAR Error Messages

.

1. ”X-RADAR 1/0O Error : File filename Not Found”

While this error is fairly self-explanatory, it can also occur if no file name is

entered at the prompt. Suggested remedies are making sure the file exists

and is readable and checking the complete path and file extension spellings.

2. "X-RADAR Protocol Error : Must be in single screen mode to set scale

(e

factors.”

Again, this error is self-explanatory. The reason this was implemented as an

!

error was to lessen the possible visual errors in setting the scale factors.

"X-RADAR Protocol Error : Function not available for ISAR images.”

m” ‘l !
Red

This error covers a number of functions which were not implemented for

o

ISAR images due to the format of ISAR images. While it is technically

possible to épply these functions to ISAR images, it was decided to leave

this work for the future.

141

il
|
ﬂ; i

4. "X-RADAR Protocol Error : Must be in single screen mode to rotate image.”

As described previously for setting the scale factors, a full-screen image is

[l

easier to see than a small image.

5. "X-RADAR Protocol Error : Must be in single screen mode to shift image.” .

Same as above.

1 L} [

[

Gl

142

il

11

Appendix D
X-RADAR Data File Formats

- D.1 Radar Image File Format

o

Radar image files are formatted ASCII text files consisting of the number of scat-

tering centers, the angle of incidence of the radar signal, followed by the x, y, z coor-

LTIR
i

dinates (in inches from the phase center of the target) and the magnitude of each

scattering center (normalized to 1.0) in the following format (U = <space>)

number of scattering centersUincident angle <ret>
xLlyUzUmagnitude <ret>
xUylUzUmagnitude <ret>

<eof>
= An example is given below :
<tof>

-~ 4 45.0 <ret>
T 12.24 10.38 4.57 .87 <ret>

- 4.08 5.67 7.99 .45 <ret>

34.45 40.00 23.00 .33 <ret>

- 27.99 30.12 12.87 .56 <ret>

;% <eof>
- ' 143

D.2 Video Image File Format

Video image files consist of row-column binary raster scan dumps of the 512x480
image array. The data type of each pixel in the raster scan is 'unsigned short’
or 'byte’, with a value of zero representing the lowest brightness and a value of
255 representing the highest brightness. The pixel data is written to the file as an

unformatted stream, as shown below :

<tof>pixell,rowl;pixel2,rowl;. .. ;pixel511,rowl;pixell,row2; pixel2,row2;

.. ;pixel511,row480 <eof>

D.3 - ISAR Image File Format

ISAR image files are of the same format as video image files but the data is scaled
differently. Due to the look-up tables used for displaying the ISAR data, a pixel
value of 0 represents no data, a value of 128 represents the lowest magnitude to be

displayed and a value of 255 represent the highest magnitude to be displayed.

144

It
QU

gl i

LR

mi |

il

_
il
|

o

{mm nae

rvwnm-nu

Bibliography

[1] A. Dominek, I. Gupta, W.D. Burnside, “A Novel Approach for Two- and

2]

3]

[4]

[5]

[7]

(8]

Three-Dimensional Imaging”, The Ohio State University ElectroScience Lab-
oratory, Department of Electrical Engineering.

Walton, Eric K., “Comparison of Fourier and Maximum Entropy Techniques
for High Resolution Scattering Studies”, Radio Science, Vol. 22, No. 1,
January-Febuary 1987, pp. 350-356.

Harrington, Roger F., Time-Harmonic Electromagnetic Fields, McGraw-Hill,
1987, pp. 292-298.

T.H. Lee and W.D. Burnside, “A Focussed Image Processing Procedure Us-
ing Near Zone Scattered Fields Obtained in the Compact Range,” Technical
Report 720150-1, 1988, The Ohio State University ElectroScience Laboratory,

Department of Electrical Engineering.
Mensa, D.L., High Resolution Radar Imaging, Artech House, 1981.

Lin, W.,“A User-Oriented, Menu-Driven, Software Interface to Control a
Radar System and Manipulate Measured Data”, Ohio State University, De-
partment of Electrical Engineering, M.Sc. thesis, August, 1988.

R.R. Swick and T. Weissman, “X Toolkit Widgets - C Language X Interface”,
Massachusetts Institute of Technology and Digital Equipment Corporation,
1988.

J. McCormack, P. Asénte, R.R. Swick, “X Toolkit Intrinsics - C Language In-
terface”, Massachusetts Institule of Technology and Digital Equipment Cor-
poration, 1988.

145

[9] Jones, Oliver, Introduction to the X Window System, Prentice Hall, Inc., 1989.

[10] Young, Douglas A., X Window Systems : Programming and Applications with =
Xt, Prentice Hall, Inc., 1989.

[11] “FG-100-V User’s Manual”, Part Number 47-H10018-01, Imaging Technology -
Inc., 1987.
-
[12] “UTeK V User’s Reference”, Part Number 070-7576-00, Tektronix Inc., 1989.
[13] M.T. Bell and W. Scheckla, “OEM/VAR System Integration Support for
Third-Party 1/0O Bus Devices”, Tektronix Inc., 1989.
=
[14] Lin, W., Personal Communication, in preparation for publication, The Ohio _
State University ElectroScience Laboratory, Department of Electrical Engi- —
neering. -
s
-
-
=
=
146 —
-

S

